Spaces:
Sleeping
Sleeping
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.vectorstores import FAISS | |
def build_rag_pipeline(docs, embedding_model): | |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
chunks = splitter.split_documents(docs) | |
embeddings = HuggingFaceEmbeddings(model_name=embedding_model) | |
db = FAISS.from_documents(chunks, embeddings) | |
return db.as_retriever() | |
def get_relevant_docs(retriever, query, k=4): | |
return retriever.get_relevant_documents(query)[:k] | |