ai_systems / src /rag_pipeline.py
amiguel's picture
Upload 5 files
d765c07 verified
raw
history blame contribute delete
583 Bytes
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
def build_rag_pipeline(docs, embedding_model):
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
chunks = splitter.split_documents(docs)
embeddings = HuggingFaceEmbeddings(model_name=embedding_model)
db = FAISS.from_documents(chunks, embeddings)
return db.as_retriever()
def get_relevant_docs(retriever, query, k=4):
return retriever.get_relevant_documents(query)[:k]