amiguel's picture
Update app.py
026c97a verified
raw
history blame
3.96 kB
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
from huggingface_hub import login
from threading import Thread
import PyPDF2
import pandas as pd
import torch
import time
# Set page configuration
st.set_page_config(
page_title="WizNerd Insp",
page_icon="πŸš€",
layout="centered"
)
MODEL_NAME = "amiguel/optimizedModelListing6.1"
# Title with rocket emojis
st.title("πŸš€ WizNerd Insp πŸš€")
# Sidebar configuration
with st.sidebar:
st.header("Authentication πŸ”’")
hf_token = st.text_input("Hugging Face Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
st.header("Upload Documents πŸ“‚")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
@st.cache_data
def process_file(uploaded_file):
# Existing file processing logic
pass
@st.cache_resource
def load_model(hf_token):
try:
if not hf_token:
st.error("πŸ” Authentication required! Please provide a Hugging Face token.")
return None
# Login to Hugging Face Hub
login(token=hf_token)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=hf_token
)
# Load model with KV caching support
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
torch_dtype=torch.float16,
token=hf_token
)
return model, tokenizer
except Exception as e:
st.error(f"πŸ€– Model loading failed: {str(e)}")
return None
# In the main chat handling section:
if prompt := st.chat_input("Ask your inspection question..."):
if not hf_token:
st.error("πŸ”‘ Authentication required!")
st.stop()
# Load model if not already loaded
if "model" not in st.session_state:
model_data = load_model(hf_token)
if model_data is None:
st.error("Failed to load model. Please check your token and try again.")
st.stop()
st.session_state.model, st.session_state.tokenizer = model_data
model = st.session_state.model
tokenizer = st.session_state.tokenizer
# Add user message
with st.chat_message("user", avatar="πŸ‘€"):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file
file_context = process_file(uploaded_file)
# Generate response with KV caching
if model and tokenizer:
try:
with st.chat_message("assistant", avatar="πŸ€–"):
start_time = time.time()
streamer = generate_with_kv_cache(prompt, file_context, use_cache=True)
response_container = st.empty()
full_response = ""
for chunk in streamer:
cleaned_chunk = chunk.replace("<think>", "").replace("</think>", "").strip()
full_response += cleaned_chunk + " "
response_container.markdown(full_response + "β–Œ", unsafe_allow_html=True)
# Display metrics
end_time = time.time()
st.caption(f"Generated in {end_time - start_time:.2f}s using KV caching")
response_container.markdown(full_response)
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"⚑ Generation error: {str(e)}")
else:
st.error("πŸ€– Model not loaded!")