Update app.py
Browse files
app.py
CHANGED
@@ -1,81 +1,171 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
|
4 |
import pandas as pd
|
5 |
-
import
|
6 |
-
from dotenv import load_dotenv
|
7 |
|
8 |
-
#
|
9 |
-
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
# Title
|
12 |
st.title("π WizNerd Insp π")
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=hf_token)
|
25 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=hf_token)
|
26 |
-
else:
|
27 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
28 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
29 |
-
return tokenizer, model
|
30 |
|
31 |
-
|
32 |
-
tokenizer, model = load_model()
|
33 |
-
except Exception as e:
|
34 |
-
st.error(f"Error loading model: {e}")
|
35 |
-
st.info("Ensure the model name is correct or provide a valid Hugging Face token.")
|
36 |
-
|
37 |
-
# Prompt style
|
38 |
-
prompt_style = """
|
39 |
-
Below is an instruction that describes a task, paired with an input that provides further context.
|
40 |
-
Write a response that appropriately completes the request.
|
41 |
-
Before answering, think carefully about the question and create a step-by-step chain of thoughts to ensure a logical and accurate response.
|
42 |
-
### Instruction:
|
43 |
-
You are an experienced inspection methods engineer, a topside expert with advanced knowledge in scope definition, functional location determination, and inspection plan building.
|
44 |
-
Please answer the following inspection scope question.
|
45 |
-
### Instruction:
|
46 |
{}
|
47 |
-
### Output:
|
48 |
-
<think>
|
49 |
-
{}
|
50 |
-
</think>
|
51 |
-
{}"""
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
-
#
|
62 |
-
|
63 |
-
|
64 |
-
if st.button("Submit"):
|
65 |
-
if user_input.strip() != "":
|
66 |
-
response = generate_response(user_input)
|
67 |
-
st.write("Response:")
|
68 |
-
st.write(response)
|
69 |
|
70 |
# Process uploaded files
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import PyPDF2
|
4 |
import pandas as pd
|
5 |
+
import torch
|
|
|
6 |
|
7 |
+
# Set page configuration
|
8 |
+
st.set_page_config(
|
9 |
+
page_title="WizNerd Insp",
|
10 |
+
page_icon="π",
|
11 |
+
layout="wide"
|
12 |
+
)
|
13 |
|
14 |
+
# Title with rocket emojis
|
15 |
st.title("π WizNerd Insp π")
|
16 |
|
17 |
+
# Define prompt template
|
18 |
+
PROMPT_TEMPLATE = """Below is an instruction that describes a task, paired with an input that provides further context.
|
19 |
+
You are an experienced inspection methods engineer with expertise in:
|
20 |
+
- Offshore topside structural inspection planning
|
21 |
+
- FLOC classification and RBI methodologies
|
22 |
+
- Degradation mechanism analysis for process systems
|
23 |
+
- ASME/API compliance and integrity engineering
|
24 |
|
25 |
+
Write a response that appropriately completes the request following these steps:
|
26 |
+
1. Analyze the context and question requirements
|
27 |
+
2. Identify relevant codes and standards
|
28 |
+
3. Consider equipment criticality factors
|
29 |
+
4. Evaluate potential degradation mechanisms
|
30 |
+
5. Formulate technical recommendation
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
### instruction:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
{}
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
### output:
|
36 |
+
<think>
|
37 |
+
{{REASONING}}
|
38 |
+
</think>
|
39 |
+
{{ANSWER}}"""
|
40 |
+
|
41 |
+
# Sidebar file uploader
|
42 |
+
with st.sidebar:
|
43 |
+
st.header("Upload Documents")
|
44 |
+
uploaded_file = st.file_uploader(
|
45 |
+
"Choose a PDF or XLSX file",
|
46 |
+
type=["pdf", "xlsx"],
|
47 |
+
label_visibility="collapsed"
|
48 |
+
)
|
49 |
|
50 |
+
# Initialize chat history
|
51 |
+
if "messages" not in st.session_state:
|
52 |
+
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
# Process uploaded files
|
55 |
+
@st.cache_data
|
56 |
+
def process_file(uploaded_file):
|
57 |
+
file_content = ""
|
58 |
+
|
59 |
+
try:
|
60 |
+
if uploaded_file.type == "application/pdf":
|
61 |
+
pdf_reader = PyPDF2.PdfReader(uploaded_file)
|
62 |
+
for page in pdf_reader.pages:
|
63 |
+
file_content += page.extract_text()
|
64 |
+
|
65 |
+
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
|
66 |
+
df = pd.read_excel(uploaded_file)
|
67 |
+
file_content = df.to_string()
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Error processing file: {str(e)}")
|
71 |
+
return None
|
72 |
+
|
73 |
+
return file_content
|
74 |
+
|
75 |
+
# Load model and tokenizer with caching
|
76 |
+
@st.cache_resource
|
77 |
+
def load_model():
|
78 |
+
model_name = "amiguel/optimizedModelListing6.1"
|
79 |
+
|
80 |
+
try:
|
81 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
model_name,
|
84 |
+
device_map="auto",
|
85 |
+
torch_dtype=torch.float16,
|
86 |
+
trust_remote_code=True
|
87 |
+
)
|
88 |
+
return model, tokenizer
|
89 |
+
except Exception as e:
|
90 |
+
st.error(f"Failed to load model: {str(e)}")
|
91 |
+
return None, None
|
92 |
+
|
93 |
+
model, tokenizer = load_model()
|
94 |
+
|
95 |
+
# Display chat messages
|
96 |
+
for message in st.session_state.messages:
|
97 |
+
with st.chat_message(message["role"]):
|
98 |
+
if message["role"] == "assistant":
|
99 |
+
st.markdown(message["content"]["answer"])
|
100 |
+
with st.expander("View Reasoning Process"):
|
101 |
+
st.markdown(message["content"]["reasoning"])
|
102 |
+
else:
|
103 |
+
st.markdown(message["content"])
|
104 |
+
|
105 |
+
# Chat input
|
106 |
+
if prompt := st.chat_input("Ask your inspection question..."):
|
107 |
+
# Add user message to chat history
|
108 |
+
st.session_state.messages.append({"role": "user", "content": prompt})
|
109 |
+
|
110 |
+
# Process file if uploaded
|
111 |
+
file_context = ""
|
112 |
+
if uploaded_file is not None:
|
113 |
+
file_context = process_file(uploaded_file)
|
114 |
+
|
115 |
+
# Generate response
|
116 |
+
if model and tokenizer:
|
117 |
+
with st.chat_message("assistant"):
|
118 |
+
with st.spinner("Analyzing..."):
|
119 |
+
try:
|
120 |
+
# Prepare input
|
121 |
+
context_prompt = f"Context: {file_context}\n\nQuestion: {prompt}" if file_context else prompt
|
122 |
+
formatted_prompt = PROMPT_TEMPLATE.format(context_prompt)
|
123 |
+
|
124 |
+
# Tokenize input
|
125 |
+
inputs = tokenizer(
|
126 |
+
formatted_prompt,
|
127 |
+
return_tensors="pt",
|
128 |
+
max_length=4096,
|
129 |
+
truncation=True
|
130 |
+
).to(model.device)
|
131 |
+
|
132 |
+
# Generate response
|
133 |
+
outputs = model.generate(
|
134 |
+
**inputs,
|
135 |
+
max_new_tokens=1024,
|
136 |
+
temperature=0.7,
|
137 |
+
top_p=0.9,
|
138 |
+
repetition_penalty=1.1,
|
139 |
+
do_sample=True
|
140 |
+
)
|
141 |
+
|
142 |
+
# Decode response
|
143 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
144 |
+
|
145 |
+
# Parse response components
|
146 |
+
try:
|
147 |
+
reasoning = full_response.split("<think>")[1].split("</think>")[0].strip()
|
148 |
+
answer = full_response.split("</think>")[1].strip()
|
149 |
+
except:
|
150 |
+
reasoning = "Reasoning steps not properly formatted"
|
151 |
+
answer = full_response
|
152 |
+
|
153 |
+
# Display response
|
154 |
+
with st.expander("Reasoning Process (Click to view)", expanded=False):
|
155 |
+
st.markdown(f"π **Analysis Steps:**\n{reasoning}")
|
156 |
+
|
157 |
+
st.markdown(f"π **Expert Recommendation:**\n{answer}")
|
158 |
+
|
159 |
+
# Add to chat history
|
160 |
+
st.session_state.messages.append({
|
161 |
+
"role": "assistant",
|
162 |
+
"content": {
|
163 |
+
"answer": answer,
|
164 |
+
"reasoning": reasoning
|
165 |
+
}
|
166 |
+
})
|
167 |
+
|
168 |
+
except Exception as e:
|
169 |
+
st.error(f"Generation error: {str(e)}")
|
170 |
+
else:
|
171 |
+
st.error("Model not loaded properly")
|