Spaces:
Sleeping
Sleeping
File size: 7,253 Bytes
3145713 fe620e6 3145713 fe620e6 3145713 fe620e6 3145713 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import streamlit as st
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
TextIteratorStreamer,
AutoConfig
)
from huggingface_hub import login
from threading import Thread
import PyPDF2
import pandas as pd
import torch
import time
import os
# Check if 'peft' is installed
try:
from peft import PeftModel, PeftConfig
except ImportError:
raise ImportError(
"The 'peft' library is required but not installed. "
"Please install it using: `pip install peft`"
)
# π Hugging Face Token via Environment Variable
HF_TOKEN = os.environ.get("HF_TOKEN")
if not HF_TOKEN:
raise ValueError("Missing Hugging Face Token. Please set the HF_TOKEN environment variable.")
# π Model base and adapters
BASE_MODEL_NAME = "unicamp-dl/ptt5-base-portuguese-vocab" #"neuralmind/bert-base-portuguese-cased" #"pierreguillou/gpt2-small-portuguese" # #"mistralai/Mistral-7B-Instruct-v0.2"
MODEL_OPTIONS = {
"Full Fine-Tuned": "amiguel/mistral-angolan-laborlaw-ptt5" #"amiguel/mistral-angolan-laborlaw-bert-base-pt", #"amiguel/mistral-angolan-laborlaw-gpt2",#, #"amiguel/mistral-angolan-laborlaw",
"LoRA Adapter": "amiguel/SmolLM2-360M-concise-reasoning-lora",
"QLoRA Adapter": "amiguel/SmolLM2-360M-concise-reasoning-qlora"
}
# πΌ UI Setup
st.set_page_config(page_title="Assistente LGT | Angola", page_icon="π", layout="centered")
st.title("π Assistente LGT | Angola π")
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar
with st.sidebar:
st.header("Model Selection π€")
model_type = st.selectbox("Choose Model Type", list(MODEL_OPTIONS.keys()), index=0)
selected_model = MODEL_OPTIONS[model_type]
st.header("Upload Documents π")
uploaded_file = st.file_uploader("Choose a PDF or XLSX file", type=["pdf", "xlsx"], label_visibility="collapsed")
# Chat memory
if "messages" not in st.session_state:
st.session_state.messages = []
# π File processing
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join(page.extract_text() or "" for page in reader.pages)
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"π Error processing file: {str(e)}")
return ""
# π§ Load model and tokenizer
@st.cache_resource
def load_model(model_type, selected_model):
try:
login(token=HF_TOKEN)
device = "cuda" if torch.cuda.is_available() else "cpu"
dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
tokenizer = AutoTokenizer.from_pretrained(selected_model, token=HF_TOKEN)
if model_type == "Full Fine-Tuned":
model = AutoModelForCausalLM.from_pretrained(
selected_model,
device_map="auto",
torch_dtype=dtype,
token=HF_TOKEN
)
else:
base_model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_NAME,
device_map="auto",
torch_dtype=dtype,
token=HF_TOKEN
)
model = PeftModel.from_pretrained(
base_model,
selected_model,
is_trainable=False,
torch_dtype=dtype,
token=HF_TOKEN
)
return model, tokenizer
except Exception as e:
st.error(f"π€ Model loading failed: {str(e)}")
return None, None
# π Generate response
def generate_with_streaming(prompt, file_context, model, tokenizer):
full_prompt = f"Analisa este contexto:\n{file_context}\n\nPergunta: {prompt}\nResposta:"
inputs = tokenizer(full_prompt, return_tensors="pt")
inputs = {k: v.to(model.device) for k, v in inputs.items()}
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
gen_kwargs = {
"input_ids": inputs["input_ids"],
"attention_mask": inputs["attention_mask"],
"max_new_tokens": 1024,
"temperature": 0.7,
"top_p": 0.9,
"repetition_penalty": 1.1,
"do_sample": True,
"use_cache": True,
"streamer": streamer
}
Thread(target=model.generate, kwargs=gen_kwargs).start()
return streamer
# π§Ύ Display chat history
for msg in st.session_state.messages:
avatar = USER_AVATAR if msg["role"] == "user" else BOT_AVATAR
with st.chat_message(msg["role"], avatar=avatar):
st.markdown(msg["content"])
# π Main interaction loop
if prompt := st.chat_input("Pergunta sobre a LGT?"):
# Display user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Load model if needed
if "model" not in st.session_state or st.session_state.get("model_type") != model_type:
with st.spinner("π A carregar modelo..."):
model, tokenizer = load_model(model_type, selected_model)
if not model:
st.stop()
st.session_state.model = model
st.session_state.tokenizer = tokenizer
st.session_state.model_type = model_type
else:
model = st.session_state.model
tokenizer = st.session_state.tokenizer
# Prepare context
file_context = process_file(uploaded_file) or "Sem contexto adicional disponΓvel."
# Generate assistant response
with st.chat_message("assistant", avatar=BOT_AVATAR):
response_box = st.empty()
full_response = ""
try:
start_time = time.time()
streamer = generate_with_streaming(prompt, file_context, model, tokenizer)
for chunk in streamer:
full_response += chunk.strip() + " "
response_box.markdown(full_response + "β", unsafe_allow_html=True)
# Token and speed metrics
end_time = time.time()
input_tokens = len(tokenizer(prompt)["input_ids"])
output_tokens = len(tokenizer(full_response)["input_ids"])
speed = output_tokens / (end_time - start_time)
cost_usd = ((input_tokens / 1e6) * 5) + ((output_tokens / 1e6) * 15)
cost_aoa = cost_usd * 1160
st.caption(
f"π Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
f"π Speed: {speed:.1f}t/s | π° USD: ${cost_usd:.4f} | π¦π΄ AOA: {cost_aoa:.2f}"
)
response_box.markdown(full_response.strip())
st.session_state.messages.append({"role": "assistant", "content": full_response.strip()})
except Exception as e:
st.error(f"β‘ Erro ao gerar resposta: {str(e)}")
|