Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
from huggingface_hub import login | |
import PyPDF2 | |
import pandas as pd | |
import torch | |
import os | |
import re | |
# Set page configuration | |
st.set_page_config( | |
page_title="WizNerd Insp", | |
page_icon="π", | |
layout="centered" | |
) | |
# Load Hugging Face token from environment variable | |
HF_TOKEN = os.getenv("HF_TOKEN") | |
# Model name | |
MODEL_NAME = "amiguel/instruct_BERT-base-uncased_model" | |
# Label mapping | |
LABEL_TO_CLASS = { | |
0: "Campaign", 1: "Corrosion Monitoring", 2: "Flare Tip", 3: "Flare TIP", | |
4: "FU Items", 5: "Intelligent Pigging", 6: "Lifting", 7: "Non Structural Tank", | |
8: "Piping", 9: "Pressure Safety Device", 10: "Pressure Vessel (VIE)", | |
11: "Pressure Vessel (VII)", 12: "Structure", 13: "Flame Arrestor" | |
} | |
# Title with rocket emojis | |
st.title("π WizNerd Insp π") | |
# Configure Avatars | |
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png" | |
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg" | |
# Sidebar configuration | |
with st.sidebar: | |
st.header("Upload Documents π") | |
uploaded_file = st.file_uploader( | |
"Choose a PDF, XLSX, or CSV file", | |
type=["pdf", "xlsx", "csv"], | |
label_visibility="collapsed" | |
) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
st.session_state.messages = [] | |
# File processing function with pre-processing | |
def process_file(uploaded_file): | |
if uploaded_file is None: | |
return None | |
try: | |
if uploaded_file.type == "application/pdf": | |
pdf_reader = PyPDF2.PdfReader(uploaded_file) | |
text = "\n".join([page.extract_text() for page in pdf_reader.pages]) | |
# Basic pre-processing | |
text = re.sub(r'\s+', ' ', text.lower().strip()) | |
return {"type": "text", "content": text} | |
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": | |
df = pd.read_excel(uploaded_file) | |
elif uploaded_file.type == "text/csv": | |
df = pd.read_csv(uploaded_file) | |
# For tabular data (xlsx, csv), detect scope columns | |
if 'df' in locals(): | |
scope_cols = [col for col in df.columns if "scope" in col.lower()] | |
if not scope_cols: | |
st.warning("No 'scope' column found in the file. Using all data as context.") | |
return {"type": "table", "content": df.to_markdown()} | |
# Pre-process scope data | |
scope_data = df[scope_cols].dropna().astype(str).apply(lambda x: re.sub(r'\s+', ' ', x.lower().strip())) | |
return {"type": "scope", "content": scope_data} | |
except Exception as e: | |
st.error(f"π Error processing file: {str(e)}") | |
return None | |
# Model loading function | |
def load_model(hf_token): | |
try: | |
if not hf_token: | |
st.error("π Authentication required! Please set the HF_TOKEN environment variable.") | |
return None | |
login(token=hf_token) | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token) | |
model = AutoModelForSequenceClassification.from_pretrained( | |
MODEL_NAME, | |
num_labels=len(LABEL_TO_CLASS), | |
token=hf_token | |
) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
return model, tokenizer | |
except Exception as e: | |
st.error(f"π€ Model loading failed: {str(e)}") | |
return None | |
# Classification function | |
def classify_instruction(prompt, file_context, model, tokenizer): | |
model.eval() | |
device = model.device | |
if file_context["type"] == "scope": | |
# Batch prediction for multiple scope entries | |
predictions = [] | |
for scope in file_context["content"].values.flatten(): | |
full_prompt = f"Context:\n{scope}\n\nInstruction: {prompt}" | |
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
prediction = outputs.logits.argmax().item() | |
predictions.append(LABEL_TO_CLASS[prediction]) | |
return predictions | |
else: | |
# Single prediction for text or table context | |
full_prompt = f"Context:\n{file_context['content']}\n\nInstruction: {prompt}" | |
inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
prediction = outputs.logits.argmax().item() | |
return LABEL_TO_CLASS[prediction] | |
# Display chat messages | |
for message in st.session_state.messages: | |
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR | |
with st.chat_message(message["role"], avatar=avatar): | |
st.markdown(message["content"]) | |
# Chat input handling | |
if prompt := st.chat_input("Ask your inspection question..."): | |
# Load model if not already loaded | |
if "model" not in st.session_state: | |
model_data = load_model(HF_TOKEN) | |
if model_data is None: | |
st.error("Failed to load model. Please ensure HF_TOKEN is set correctly.") | |
st.stop() | |
st.session_state.model, st.session_state.tokenizer = model_data | |
model = st.session_state.model | |
tokenizer = st.session_state.tokenizer | |
# Add user message | |
with st.chat_message("user", avatar=USER_AVATAR): | |
st.markdown(prompt) | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Process file context | |
file_context = process_file(uploaded_file) | |
if file_context is None: | |
st.error("No file uploaded or file processing failed.") | |
st.stop() | |
# Classify the instruction | |
if model and tokenizer: | |
try: | |
with st.chat_message("assistant", avatar=BOT_AVATAR): | |
predicted_output = classify_instruction(prompt, file_context, model, tokenizer) | |
if file_context["type"] == "scope": | |
# Display multiple predictions in a table | |
scope_values = file_context["content"].values.flatten() | |
result_df = pd.DataFrame({ | |
"Scope": scope_values, | |
"Predicted Class": predicted_output | |
}) | |
st.write("Predicted Classes:") | |
st.table(result_df) | |
response = "Predictions completed for multiple scope entries." | |
else: | |
# Single prediction | |
response = f"The Item Class is: {predicted_output}" | |
st.markdown(response) | |
st.session_state.messages.append({"role": "assistant", "content": response}) | |
except Exception as e: | |
st.error(f"β‘ Classification error: {str(e)}") | |
else: | |
st.error("π€ Model not loaded!") |