Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import pandas as pd
|
|
4 |
import torch
|
5 |
import os
|
6 |
import re
|
|
|
7 |
|
8 |
try:
|
9 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
@@ -16,6 +17,19 @@ except ImportError as e:
|
|
16 |
# Set page configuration
|
17 |
st.set_page_config(page_title="WizNerd Insp", page_icon="π", layout="centered")
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
# Load Hugging Face token
|
20 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
21 |
|
@@ -131,6 +145,13 @@ def classify_instruction(prompt, context, model, tokenizer):
|
|
131 |
prediction = outputs.logits.argmax().item()
|
132 |
return LABEL_TO_CLASS[prediction]
|
133 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
# Load model
|
135 |
if "model" not in st.session_state:
|
136 |
model_data = load_model(HF_TOKEN)
|
@@ -179,10 +200,11 @@ if prompt := st.chat_input("Ask your inspection question..."):
|
|
179 |
file_data = st.session_state.file_data
|
180 |
if file_data["type"] == "table":
|
181 |
predictions = classify_instruction(prompt, file_data["content"], model, tokenizer)
|
182 |
-
result_df = file_data["content"].copy()
|
183 |
result_df["Predicted Class"] = predictions
|
184 |
st.write("Predicted Item Classes:")
|
185 |
st.table(result_df)
|
|
|
186 |
response = "Predictions completed for uploaded file."
|
187 |
else:
|
188 |
predicted_class = classify_instruction(prompt, file_data["content"], model, tokenizer)
|
|
|
4 |
import torch
|
5 |
import os
|
6 |
import re
|
7 |
+
import base64 # For CSV download
|
8 |
|
9 |
try:
|
10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
17 |
# Set page configuration
|
18 |
st.set_page_config(page_title="WizNerd Insp", page_icon="π", layout="centered")
|
19 |
|
20 |
+
# Custom CSS for Tw Cen MT font
|
21 |
+
st.markdown("""
|
22 |
+
<style>
|
23 |
+
@import url('https://fonts.googleapis.com/css2?family=Tw+Cen+MT&display=swap');
|
24 |
+
html, body, [class*="css"] {
|
25 |
+
font-family: 'Tw Cen MT', sans-serif !important;
|
26 |
+
}
|
27 |
+
.stTable table {
|
28 |
+
font-family: 'Tw Cen MT', sans-serif !important;
|
29 |
+
}
|
30 |
+
</style>
|
31 |
+
""", unsafe_allow_html=True)
|
32 |
+
|
33 |
# Load Hugging Face token
|
34 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
35 |
|
|
|
145 |
prediction = outputs.logits.argmax().item()
|
146 |
return LABEL_TO_CLASS[prediction]
|
147 |
|
148 |
+
# CSV download function
|
149 |
+
def get_csv_download_link(df, filename="predicted_classes.csv"):
|
150 |
+
csv = df.to_csv(index=False)
|
151 |
+
b64 = base64.b64encode(csv.encode()).decode() # Encode to base64
|
152 |
+
href = f'<a href="data:file/csv;base64,{b64}" download="{filename}">Download CSV</a>'
|
153 |
+
return href
|
154 |
+
|
155 |
# Load model
|
156 |
if "model" not in st.session_state:
|
157 |
model_data = load_model(HF_TOKEN)
|
|
|
200 |
file_data = st.session_state.file_data
|
201 |
if file_data["type"] == "table":
|
202 |
predictions = classify_instruction(prompt, file_data["content"], model, tokenizer)
|
203 |
+
result_df = file_data["content"][["Scope", "Functional Location"]].copy()
|
204 |
result_df["Predicted Class"] = predictions
|
205 |
st.write("Predicted Item Classes:")
|
206 |
st.table(result_df)
|
207 |
+
st.markdown(get_csv_download_link(result_df), unsafe_allow_html=True)
|
208 |
response = "Predictions completed for uploaded file."
|
209 |
else:
|
210 |
predicted_class = classify_instruction(prompt, file_data["content"], model, tokenizer)
|