import streamlit as st from transformers import AutoTokenizer, AutoModelForSequenceClassification from huggingface_hub import login import PyPDF2 import pandas as pd import torch import os # Set page configuration st.set_page_config( page_title="WizNerd Insp", page_icon="🚀", layout="centered" ) # Load Hugging Face token from environment variable HF_TOKEN = os.getenv("HF_TOKEN") # Set this in your Space's secrets # Model name MODEL_NAME = "amiguel/instruct_BERT-base-uncased_model" # Label mapping (same as in Colab) LABEL_TO_CLASS = { 0: "Campaign", 1: "Corrosion Monitoring", 2: "Flare Tip", 3: "Flare TIP", 4: "FU Items", 5: "Intelligent Pigging", 6: "Lifting", 7: "Non Structural Tank", 8: "Piping", 9: "Pressure Safety Device", 10: "Pressure Vessel (VIE)", 11: "Pressure Vessel (VII)", 12: "Structure", 13: "Flame Arrestor" } # Title with rocket emojis st.title("🚀 WizNerd Insp 🚀") # Configure Avatars USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png" BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg" # Sidebar configuration with st.sidebar: st.header("Upload Documents 📂") uploaded_file = st.file_uploader( "Choose a PDF or XLSX file", type=["pdf", "xlsx"], label_visibility="collapsed" ) # Initialize chat history if "messages" not in st.session_state: st.session_state.messages = [] # File processing function @st.cache_data def process_file(uploaded_file): if uploaded_file is None: return "" try: if uploaded_file.type == "application/pdf": pdf_reader = PyPDF2.PdfReader(uploaded_file) return "\n".join([page.extract_text() for page in pdf_reader.pages]) elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": df = pd.read_excel(uploaded_file) return df.to_markdown() except Exception as e: st.error(f"📄 Error processing file: {str(e)}") return "" # Model loading function @st.cache_resource def load_model(hf_token): try: if not hf_token: st.error("🔐 Authentication required! Please set the HF_TOKEN environment variable.") return None login(token=hf_token) # Load tokenizer and model for classification tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token) model = AutoModelForSequenceClassification.from_pretrained( MODEL_NAME, num_labels=len(LABEL_TO_CLASS), # Ensure correct number of labels token=hf_token ) # Determine device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) return model, tokenizer except Exception as e: st.error(f"🤖 Model loading failed: {str(e)}") return None # Classification function def classify_instruction(prompt, file_context, model, tokenizer): full_prompt = f"Context:\n{file_context}\n\nInstruction: {prompt}" model.eval() device = model.device inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): outputs = model(**inputs) prediction = outputs.logits.argmax().item() class_name = LABEL_TO_CLASS[prediction] return class_name # Display chat messages for message in st.session_state.messages: try: avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR with st.chat_message(message["role"], avatar=avatar): st.markdown(message["content"]) except: with st.chat_message(message["role"]): st.markdown(message["content"]) # Chat input handling if prompt := st.chat_input("Ask your inspection question..."): # Load model if not already loaded if "model" not in st.session_state: model_data = load_model(HF_TOKEN) if model_data is None: st.error("Failed to load model. Please ensure HF_TOKEN is set correctly.") st.stop() st.session_state.model, st.session_state.tokenizer = model_data model = st.session_state.model tokenizer = st.session_state.tokenizer # Add user message with st.chat_message("user", avatar=USER_AVATAR): st.markdown(prompt) st.session_state.messages.append({"role": "user", "content": prompt}) # Process file context file_context = process_file(uploaded_file) # Classify the instruction if model and tokenizer: try: with st.chat_message("assistant", avatar=BOT_AVATAR): predicted_class = classify_instruction(prompt, file_context, model, tokenizer) response = f"The Item Class is: {predicted_class}" st.markdown(response) st.session_state.messages.append({"role": "assistant", "content": response}) except Exception as e: st.error(f"⚡ Classification error: {str(e)}") else: st.error("🤖 Model not loaded!")