Spaces:
Sleeping
Sleeping
File size: 16,532 Bytes
36ef005 55d3e9f 36ef005 55d3e9f 36ef005 55d3e9f 36ef005 f149660 36ef005 f149660 36ef005 f149660 36ef005 55d3e9f 36ef005 f149660 36ef005 55d3e9f f149660 36ef005 55d3e9f f149660 55d3e9f 36ef005 55d3e9f 36ef005 f149660 36ef005 f149660 36ef005 f149660 36ef005 f149660 36ef005 f149660 36ef005 55d3e9f 36ef005 55d3e9f 36ef005 55d3e9f 36ef005 55d3e9f 36ef005 f149660 36ef005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import streamlit as st
from transformers import PreTrainedModel, PretrainedConfig, AutoTokenizer
from huggingface_hub import login
import PyPDF2
import pandas as pd
import torch
import numpy as np
from copy import deepcopy
import math
import time
# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Set page configuration
st.set_page_config(
page_title="Translator Agent",
page_icon="🚀",
layout="centered"
)
# Model name
MODEL_NAME = "amiguel/en2fr-transformer"
# Translation prompt template
TRANSLATION_PROMPT = """
You are a professional translator specializing in English-to-French translation. Translate the following text accurately and naturally into French, preserving the original meaning and tone:
**Text to translate:**
{input_text}
**French translation:**
"""
# Title with rocket emojis
st.title("🚀 English to French Translator 🚀")
# Configure Avatars
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar configuration
with st.sidebar:
st.header("Authentication 🔒")
hf_token = st.text_input("Hugging Face Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
st.header("Upload Documents 📂")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file to translate",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# File processing function
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"📄 Error processing file: {str(e)}")
return ""
# Custom model definition (copied from previous steps)
# Masking functions
def subsequent_mask(size):
attn_shape = (1, size, size)
subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
return torch.from_numpy(subsequent_mask) == 0
def make_std_mask(tgt, pad):
tgt_mask = (tgt != pad).unsqueeze(-2)
return tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)
# Batch class
class Batch:
def __init__(self, src, trg=None, pad=0):
src = torch.from_numpy(src).to(DEVICE).long()
self.src = src
self.src_mask = (src != pad).unsqueeze(-2)
if trg is not None:
trg = torch.from_numpy(trg).to(DEVICE).long()
self.trg = trg[:, :-1]
self.trg_y = trg[:, 1:]
self.trg_mask = make_std_mask(self.trg, pad)
self.ntokens = (self.trg_y != pad).data.sum()
# Hugging Face config
class En2FrConfig(PretrainedConfig):
model_type = "en2fr_transformer"
def __init__(self, src_vocab=32000, tgt_vocab=32000, N=6, d_model=512,
d_ff=2048, h=8, dropout=0.1, **kwargs):
self.src_vocab = src_vocab
self.tgt_vocab = tgt_vocab
self.N = N
self.d_model = d_model
self.d_ff = d_ff
self.h = h
self.dropout = dropout
super().__init__(**kwargs)
# Transformer components
class Transformer(nn.Module):
def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.src_embed = src_embed
self.tgt_embed = tgt_embed
self.generator = generator
def forward(self, src, tgt, src_mask, tgt_mask):
memory = self.encoder(self.src_embed(src), src_mask)
output = self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
return output
class Encoder(nn.Module):
def __init__(self, layer, N):
super().__init__()
self.layers = nn.ModuleList([deepcopy(layer) for _ in range(N)])
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
class EncoderLayer(nn.Module):
def __init__(self, size, self_attn, feed_forward, dropout):
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.sublayer = nn.ModuleList([deepcopy(SublayerConnection(size, dropout)) for _ in range(2)])
self.size = size
def forward(self, x, mask):
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
return self.sublayer[1](x, self.feed_forward)
class Decoder(nn.Module):
def __init__(self, layer, N):
super().__init__()
self.layers = nn.ModuleList([deepcopy(layer) for _ in range(N)])
self.norm = LayerNorm(layer.size)
def forward(self, x, memory, src_mask, tgt_mask):
for layer in self.layers:
x = layer(x, memory, src_mask, tgt_mask)
return self.norm(x)
class DecoderLayer(nn.Module):
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super().__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.sublayer = nn.ModuleList([deepcopy(SublayerConnection(size, dropout)) for _ in range(3)])
def forward(self, x, memory, src_mask, tgt_mask):
x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
x = self.sublayer[1](x, lambda x: self.src_attn(x, memory, memory, src_mask))
return self.sublayer[2](x, self.feed_forward)
class SublayerConnection(nn.Module):
def __init__(self, size, dropout):
super().__init__()
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, sublayer):
return x + self.dropout(sublayer(self.norm(x)))
class LayerNorm(nn.Module):
def __init__(self, features, eps=1e-6):
super().__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
class MultiHeadedAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
super().__init__()
assert d_model % h == 0
self.d_k = d_model // h
self.h = h
self.linears = nn.ModuleList([deepcopy(nn.Linear(d_model, d_model)) for _ in range(4)])
self.attn = None
self.dropout = nn.Dropout(p=dropout)
def forward(self, query, key, value, mask=None):
if mask is not None:
mask = mask.unsqueeze(1)
nbatches = query.size(0)
query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
for l, x in zip(self.linears, (query, key, value))]
x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
return self.linears[-1](x)
def attention(query, key, value, mask=None, dropout=None):
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = nn.functional.softmax(scores, dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
class PositionwiseFeedForward(nn.Module):
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(self.w_1(x)))
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super().__init__()
self.lut = nn.Embedding(vocab, d_model)
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model, device=DEVICE)
position = torch.arange(0., max_len, device=DEVICE).unsqueeze(1)
div_term = torch.exp(torch.arange(0., d_model, 2, device=DEVICE) * -(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)].requires_grad_(False)
return self.dropout(x)
class Generator(nn.Module):
def __init__(self, d_model, vocab):
super().__init__()
self.proj = nn.Linear(d_model, vocab)
def forward(self, x):
return nn.functional.log_softmax(self.proj(x), dim=-1)
def create_model(src_vocab, tgt_vocab, N, d_model, d_ff, h, dropout=0.1):
attn = MultiHeadedAttention(h, d_model).to(DEVICE)
ff = PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
pos = PositionalEncoding(d_model, dropout).to(DEVICE)
model = Transformer(
Encoder(EncoderLayer(d_model, deepcopy(attn), deepcopy(ff), dropout).to(DEVICE), N).to(DEVICE),
Decoder(DecoderLayer(d_model, deepcopy(attn), deepcopy(attn), deepcopy(ff), dropout).to(DEVICE), N).to(DEVICE),
nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE), deepcopy(pos)),
nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE), deepcopy(pos)),
Generator(d_model, tgt_vocab)).to(DEVICE)
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
return model
class En2FrTransformer(PreTrainedModel):
config_class = En2FrConfig
def __init__(self, config):
super().__init__(config)
self.model = create_model(
src_vocab=config.src_vocab,
tgt_vocab=config.tgt_vocab,
N=config.N,
d_model=config.d_model,
d_ff=config.d_ff,
h=config.h,
dropout=config.dropout
)
def forward(self, src, tgt, src_mask, tgt_mask):
return self.model(src, tgt, src_mask, tgt_mask)
# Model loading function
@st.cache_resource
def load_model(hf_token):
try:
if not hf_token:
st.error("🔐 Authentication required! Please provide a Hugging Face token.")
return None
login(token=hf_token)
# Load tokenizer (assuming a tokenizer was saved with the model)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
# Load the custom model
model = En2FrTransformer.from_pretrained(
MODEL_NAME,
token=hf_token
)
model.to(DEVICE) # Ensure model is on the correct device
return model, tokenizer
except Exception as e:
st.error(f"🤖 Model loading failed: {str(e)}")
return None
# Simple tokenization function (placeholder, since we don't have the actual vocab)
def tokenize_text(text, tokenizer, max_length=10):
# This is a placeholder; in a real scenario, you'd use the tokenizer's vocabulary
# For now, we'll create dummy token IDs (0 for padding, 1 for start, 2 for end, 3+ for words)
words = text.split()
token_ids = [1] + [i + 3 for i in range(min(len(words), max_length - 2))] + [2]
if len(token_ids) < max_length:
token_ids += [0] * (max_length - len(token_ids))
return torch.tensor([token_ids], dtype=torch.long, device=DEVICE)
# Generation function for translation (custom inference loop)
def generate_translation(input_text, model, tokenizer):
model.eval()
with torch.no_grad():
# Tokenize input (source) and target (start with a dummy start token)
src = tokenize_text(input_text, tokenizer)
tgt = torch.tensor([[1]], dtype=torch.long, device=DEVICE) # Start token
src_mask = (src != 0).unsqueeze(-2)
max_length = 10 # Adjust as needed
# Generate translation token by token
for _ in range(max_length - 1):
tgt_mask = make_std_mask(tgt, pad=0)
output = model(src, tgt, src_mask, tgt_mask)
output = model.model.generator(output[:, -1, :]) # Get logits for the last token
next_token = torch.argmax(output, dim=-1).unsqueeze(0)
tgt = torch.cat((tgt, next_token), dim=1)
if next_token.item() == 2: # End token
break
# Convert token IDs back to text (placeholder)
# In a real scenario, you'd use tokenizer.decode()
translation = " ".join([f"word{i-3}" if i >= 3 else "<start>" if i == 1 else "<end>" for i in tgt[0].tolist()])
return translation
# Display chat messages
for message in st.session_state.messages:
try:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
except:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Enter text to translate into French..."):
if not hf_token:
st.error("🔑 Authentication required!")
st.stop()
# Load model if not already loaded
if "model" not in st.session_state:
model_data = load_model(hf_token)
if model_data is None:
st.error("Failed to load model. Please check your token and try again.")
st.stop()
st.session_state.model, st.session_state.tokenizer = model_data
model = st.session_state.model
tokenizer = st.session_state.tokenizer
# Add user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file or use prompt directly
file_context = process_file(uploaded_file)
input_text = file_context if file_context else prompt
# Generate translation
if model and tokenizer:
try:
with st.chat_message("assistant", avatar=BOT_AVATAR):
start_time = time.time()
translation = generate_translation(input_text, model, tokenizer)
# Display the translation
st.markdown(translation)
st.session_state.messages.append({"role": "assistant", "content": translation})
# Calculate performance metrics (simplified, since we don't have real token counts)
end_time = time.time()
input_tokens = len(input_text.split()) # Approximate
output_tokens = len(translation.split()) # Approximate
speed = output_tokens / (end_time - start_time)
# Calculate costs (hypothetical pricing model)
input_cost = (input_tokens / 1000000) * 5 # $5 per million input tokens
output_cost = (output_tokens / 1000000) * 15 # $15 per million output tokens
total_cost_usd = input_cost + output_cost
total_cost_aoa = total_cost_usd * 1160 # Convert to AOA (Angolan Kwanza)
# Display metrics
st.caption(
f"🔑 Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
f"🕒 Speed: {speed:.1f}t/s | 💰 Cost (USD): ${total_cost_usd:.4f} | "
f"💵 Cost (AOA): {total_cost_aoa:.4f}"
)
except Exception as e:
st.error(f"⚡ Translation error: {str(e)}")
else:
st.error("🤖 Model not loaded!") |