translateEn2FR / app.py
amiguel's picture
Update app.py
f82672b verified
raw
history blame
10.9 kB
import streamlit as st
import torch
import pandas as pd
import PyPDF2
import pickle
from transformers import AutoTokenizer, PreTrainedModel, PretrainedConfig
from huggingface_hub import login, hf_hub_download
import time
from ch09util import subsequent_mask, create_model # Ensure ch09util.py is available
# Device setup
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Set page configuration
st.set_page_config(
page_title="Translator Agent",
page_icon="🚀",
layout="centered"
)
# Model name
MODEL_NAME = "amiguel/custom-en2fr-transformer-v1"
# Title with rocket emojis
st.title("🚀 English to French Translator 🚀")
# Configure Avatars
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
# Sidebar configuration
with st.sidebar:
st.header("Authentication 🔒")
hf_token = st.text_input("Hugging Face Token", type="password",
help="Get your token from https://huggingface.co/settings/tokens")
st.header("Upload Documents 📂")
uploaded_file = st.file_uploader(
"Choose a PDF or XLSX file to translate",
type=["pdf", "xlsx"],
label_visibility="collapsed"
)
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# File processing function
@st.cache_data
def process_file(uploaded_file):
if uploaded_file is None:
return ""
try:
if uploaded_file.type == "application/pdf":
pdf_reader = PyPDF2.PdfReader(uploaded_file)
return "\n".join([page.extract_text() for page in pdf_reader.pages])
elif uploaded_file.type == "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet":
df = pd.read_excel(uploaded_file)
return df.to_markdown()
except Exception as e:
st.error(f"📄 Error processing file: {str(e)}")
return ""
# Custom model loading function
@st.cache_resource
def load_model_and_resources(hf_token):
try:
if not hf_token:
st.error("🔐 Authentication required! Please provide a Hugging Face token.")
return None
login(token=hf_token)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=hf_token
)
# Define Transformer configuration
class TransformerConfig(PretrainedConfig):
model_type = "custom_transformer"
def __init__(self, src_vocab_size=11055, tgt_vocab_size=11239, d_model=256, d_ff=1024, h=8, N=6, dropout=0.1, **kwargs):
super().__init__(**kwargs)
self.src_vocab_size = src_vocab_size
self.tgt_vocab_size = tgt_vocab_size
self.d_model = d_model
self.d_ff = d_ff
self.h = h
self.N = N
self.dropout = dropout
# Define Transformer model
class CustomTransformer(PreTrainedModel):
config_class = TransformerConfig
def __init__(self, config):
super().__init__(config)
self.model = create_model(
config.src_vocab_size,
config.tgt_vocab_size,
N=config.N,
d_model=config.d_model,
d_ff=config.d_ff,
h=config.h,
dropout=config.dropout
)
def forward(self, src, tgt, src_mask, tgt_mask, **kwargs):
return self.model(src, tgt, src_mask, tgt_mask)
# Load config with validation
config_dict = TransformerConfig.from_pretrained(MODEL_NAME, token=hf_token).to_dict()
if "src_vocab_size" not in config_dict or "tgt_vocab_size" not in config_dict:
st.warning(
f"Config at {MODEL_NAME}/config.json is missing 'src_vocab_size' or 'tgt_vocab_size'. "
"Using defaults (11055, 11239). For accuracy, update the training script to save these values."
)
config = TransformerConfig()
else:
config = TransformerConfig(**config_dict)
# Initialize model on meta device and load weights explicitly
model = CustomTransformer(config)
weights_path = hf_hub_download(repo_id=MODEL_NAME, filename="model.safetensors", token=hf_token)
from safetensors.torch import load_file
state_dict = load_file(weights_path)
model.load_state_dict(state_dict)
# Move model to the target device safely
if DEVICE == "cuda":
model = model.to_empty(device=DEVICE) # Move structure to GPU
model.load_state_dict(state_dict) # Reload weights on GPU
else:
model = model.to(DEVICE) # CPU can handle direct move after loading weights
model.eval()
# Load dictionaries from Hugging Face Hub
dict_path = hf_hub_download(repo_id=MODEL_NAME, filename="dict.p", token=hf_token)
with open(dict_path, "rb") as fb:
en_word_dict, en_idx_dict, fr_word_dict, fr_idx_dict = pickle.load(fb)
return model, tokenizer, en_word_dict, fr_word_dict, en_idx_dict, fr_idx_dict
except Exception as e:
st.error(f"🤖 Model loading failed: {str(e)}")
return None
# Custom streaming generation function
def custom_streaming_generate(input_text, model, tokenizer, en_word_dict, fr_word_dict, fr_idx_dict):
try:
model.eval()
PAD, UNK = 0, 1
tokenized_en = ["BOS"] + tokenizer.tokenize(input_text) + ["EOS"]
enidx = [en_word_dict.get(i, UNK) for i in tokenized_en]
src = torch.tensor(enidx).long().to(DEVICE).unsqueeze(0)
src_mask = (src != 0).unsqueeze(-2)
memory = model.model.encode(src, src_mask)
start_symbol = fr_word_dict["BOS"]
ys = torch.ones(1, 1).fill_(start_symbol).type_as(src.data)
for _ in range(100):
out = model.model.decode(memory, src_mask, ys, subsequent_mask(ys.size(1)).type_as(src.data))
prob = model.model.generator(out[:, -1])
_, next_word = torch.max(prob, dim=1)
next_word = next_word.data[0]
sym = fr_idx_dict.get(next_word, "UNK")
if sym != "EOS":
token = sym.replace("</w>", " ")
for x in '''?:;.,'("-!&)%''':
token = token.replace(f" {x}", f"{x}")
yield token
else:
break
ys = torch.cat([ys, torch.ones(1, 1).type_as(src.data).fill_(next_word)], dim=1)
# Yield a final empty token to ensure completion
yield ""
except Exception as e:
raise Exception(f"Generation error: {str(e)}")
# Display chat messages
for message in st.session_state.messages:
try:
avatar = USER_AVATAR if message["role"] == "user" else BOT_AVATAR
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
except:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input handling
if prompt := st.chat_input("Enter text to translate into French..."):
if not hf_token:
st.error("🔑 Authentication required!")
st.stop()
# Load model and resources if not already loaded
if "model" not in st.session_state:
model_data = load_model_and_resources(hf_token)
if model_data is None:
st.error("Failed to load model. Please check your token and try again.")
st.stop()
st.session_state.model, st.session_state.tokenizer, \
st.session_state.en_word_dict, st.session_state.fr_word_dict, \
st.session_state.en_idx_dict, st.session_state.fr_idx_dict = model_data
model = st.session_state.model
tokenizer = st.session_state.tokenizer
en_word_dict = st.session_state.en_word_dict
fr_word_dict = st.session_state.fr_word_dict
fr_idx_dict = st.session_state.fr_idx_dict
# Add user message
with st.chat_message("user", avatar=USER_AVATAR):
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Process file or use prompt directly
file_context = process_file(uploaded_file)
input_text = file_context if file_context else prompt
# Generate translation with streaming
if model and tokenizer:
try:
with st.chat_message("assistant", avatar=BOT_AVATAR):
start_time = time.time()
# Create a placeholder for streaming output
response_container = st.empty()
full_response = ""
# Stream translation tokens
for token in custom_streaming_generate(
input_text, model, tokenizer, en_word_dict, fr_word_dict, fr_idx_dict
):
if token: # Only append non-empty tokens
full_response += token
response_container.markdown(full_response)
# Calculate performance metrics
end_time = time.time()
input_tokens = len(tokenizer(input_text)["input_ids"])
output_tokens = len(tokenizer(full_response)["input_ids"])
speed = output_tokens / (end_time - start_time) if (end_time - start_time) > 0 else 0
# Calculate costs (hypothetical pricing model)
input_cost = (input_tokens / 1000000) * 5 # $5 per million input tokens
output_cost = (output_tokens / 1000000) * 15 # $15 per million output tokens
total_cost_usd = input_cost + output_cost
total_cost_aoa = total_cost_usd * 1160 # Convert to AOA (Angolan Kwanza)
# Display metrics
st.caption(
f"🤖 Input Tokens: {input_tokens} | Output Tokens: {output_tokens} | "
f"🕒 Speed: {speed:.1f}t/s | 💰 Cost (USD): ${total_cost_usd:.4f} | "
f"💵 Cost (AOA): {total_cost_aoa:.4f}"
)
# Store the full response in chat history
st.session_state.messages.append({"role": "assistant", "content": full_response})
except Exception as e:
st.error(f"⚡ Translation error: {str(e)}")
else:
st.error("🤖 Model not loaded!")