amiguel commited on
Commit
c7c3a66
·
verified ·
1 Parent(s): d58182a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +42 -272
app.py CHANGED
@@ -1,13 +1,9 @@
1
  import streamlit as st
2
- from transformers import PreTrainedModel, PretrainedConfig, AutoTokenizer
3
  from huggingface_hub import login
4
  import PyPDF2
5
  import pandas as pd
6
  import torch
7
- import torch.nn as nn # Added this import
8
- import numpy as np
9
- from copy import deepcopy
10
- import math
11
  import time
12
 
13
  # Device setup
@@ -21,7 +17,7 @@ st.set_page_config(
21
  )
22
 
23
  # Model name
24
- MODEL_NAME = "deepseek-ai/DeepSeek-V3-0324" #"amiguel/en2fr-transformer"
25
 
26
  # Translation prompt template
27
  TRANSLATION_PROMPT = """
@@ -74,234 +70,6 @@ def process_file(uploaded_file):
74
  st.error(f"📄 Error processing file: {str(e)}")
75
  return ""
76
 
77
- # Custom model definition
78
- # Masking functions
79
- def subsequent_mask(size):
80
- attn_shape = (1, size, size)
81
- subsequent_mask = np.triu(np.ones(attn_shape), k=1).astype('uint8')
82
- return torch.from_numpy(subsequent_mask) == 0
83
-
84
- def make_std_mask(tgt, pad):
85
- tgt_mask = (tgt != pad).unsqueeze(-2)
86
- return tgt_mask & subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data)
87
-
88
- # Batch class
89
- class Batch:
90
- def __init__(self, src, trg=None, pad=0):
91
- src = torch.from_numpy(src).to(DEVICE).long()
92
- self.src = src
93
- self.src_mask = (src != pad).unsqueeze(-2)
94
- if trg is not None:
95
- trg = torch.from_numpy(trg).to(DEVICE).long()
96
- self.trg = trg[:, :-1]
97
- self.trg_y = trg[:, 1:]
98
- self.trg_mask = make_std_mask(self.trg, pad)
99
- self.ntokens = (self.trg_y != pad).data.sum()
100
-
101
- # Hugging Face config
102
- class En2FrConfig(PretrainedConfig):
103
- model_type = "en2fr_transformer"
104
- def __init__(self, src_vocab=32000, tgt_vocab=32000, N=6, d_model=512,
105
- d_ff=2048, h=8, dropout=0.1, **kwargs):
106
- self.src_vocab = src_vocab
107
- self.tgt_vocab = tgt_vocab
108
- self.N = N
109
- self.d_model = d_model
110
- self.d_ff = d_ff
111
- self.h = h
112
- self.dropout = dropout
113
- super().__init__(**kwargs)
114
-
115
- # Transformer components
116
- class Transformer(nn.Module):
117
- def __init__(self, encoder, decoder, src_embed, tgt_embed, generator):
118
- super().__init__()
119
- self.encoder = encoder
120
- self.decoder = decoder
121
- self.src_embed = src_embed
122
- self.tgt_embed = tgt_embed
123
- self.generator = generator
124
-
125
- def forward(self, src, tgt, src_mask, tgt_mask):
126
- memory = self.encoder(self.src_embed(src), src_mask)
127
- output = self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
128
- return output
129
-
130
- class Encoder(nn.Module):
131
- def __init__(self, layer, N):
132
- super().__init__()
133
- self.layers = nn.ModuleList([deepcopy(layer) for _ in range(N)])
134
- self.norm = LayerNorm(layer.size)
135
-
136
- def forward(self, x, mask):
137
- for layer in self.layers:
138
- x = layer(x, mask)
139
- return self.norm(x)
140
-
141
- class EncoderLayer(nn.Module):
142
- def __init__(self, size, self_attn, feed_forward, dropout):
143
- super().__init__()
144
- self.self_attn = self_attn
145
- self.feed_forward = feed_forward
146
- self.sublayer = nn.ModuleList([deepcopy(SublayerConnection(size, dropout)) for _ in range(2)])
147
- self.size = size
148
-
149
- def forward(self, x, mask):
150
- x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
151
- return self.sublayer[1](x, self.feed_forward)
152
-
153
- class Decoder(nn.Module):
154
- def __init__(self, layer, N):
155
- super().__init__()
156
- self.layers = nn.ModuleList([deepcopy(layer) for _ in range(N)])
157
- self.norm = LayerNorm(layer.size)
158
-
159
- def forward(self, x, memory, src_mask, tgt_mask):
160
- for layer in self.layers:
161
- x = layer(x, memory, src_mask, tgt_mask)
162
- return self.norm(x)
163
-
164
- class DecoderLayer(nn.Module):
165
- def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
166
- super().__init__()
167
- self.size = size
168
- self.self_attn = self_attn
169
- self.src_attn = src_attn
170
- self.feed_forward = feed_forward
171
- self.sublayer = nn.ModuleList([deepcopy(SublayerConnection(size, dropout)) for _ in range(3)])
172
-
173
- def forward(self, x, memory, src_mask, tgt_mask):
174
- x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
175
- x = self.sublayer[1](x, lambda x: self.src_attn(x, memory, memory, src_mask))
176
- return self.sublayer[2](x, self.feed_forward)
177
-
178
- class SublayerConnection(nn.Module):
179
- def __init__(self, size, dropout):
180
- super().__init__()
181
- self.norm = LayerNorm(size)
182
- self.dropout = nn.Dropout(dropout)
183
-
184
- def forward(self, x, sublayer):
185
- return x + self.dropout(sublayer(self.norm(x)))
186
-
187
- class LayerNorm(nn.Module):
188
- def __init__(self, features, eps=1e-6):
189
- super().__init__()
190
- self.a_2 = nn.Parameter(torch.ones(features))
191
- self.b_2 = nn.Parameter(torch.zeros(features))
192
- self.eps = eps
193
-
194
- def forward(self, x):
195
- mean = x.mean(-1, keepdim=True)
196
- std = x.std(-1, keepdim=True)
197
- return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
198
-
199
- class MultiHeadedAttention(nn.Module):
200
- def __init__(self, h, d_model, dropout=0.1):
201
- super().__init__()
202
- assert d_model % h == 0
203
- self.d_k = d_model // h
204
- self.h = h
205
- self.linears = nn.ModuleList([deepcopy(nn.Linear(d_model, d_model)) for _ in range(4)])
206
- self.attn = None
207
- self.dropout = nn.Dropout(p=dropout)
208
-
209
- def forward(self, query, key, value, mask=None):
210
- if mask is not None:
211
- mask = mask.unsqueeze(1)
212
- nbatches = query.size(0)
213
- query, key, value = [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
214
- for l, x in zip(self.linears, (query, key, value))]
215
- x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout)
216
- x = x.transpose(1, 2).contiguous().view(nbatches, -1, self.h * self.d_k)
217
- return self.linears[-1](x)
218
-
219
- def attention(query, key, value, mask=None, dropout=None):
220
- d_k = query.size(-1)
221
- scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
222
- if mask is not None:
223
- scores = scores.masked_fill(mask == 0, -1e9)
224
- p_attn = nn.functional.softmax(scores, dim=-1)
225
- if dropout is not None:
226
- p_attn = dropout(p_attn)
227
- return torch.matmul(p_attn, value), p_attn
228
-
229
- class PositionwiseFeedForward(nn.Module):
230
- def __init__(self, d_model, d_ff, dropout=0.1):
231
- super().__init__()
232
- self.w_1 = nn.Linear(d_model, d_ff)
233
- self.w_2 = nn.Linear(d_ff, d_model)
234
- self.dropout = nn.Dropout(dropout)
235
-
236
- def forward(self, x):
237
- return self.w_2(self.dropout(self.w_1(x)))
238
-
239
- class Embeddings(nn.Module):
240
- def __init__(self, d_model, vocab):
241
- super().__init__()
242
- self.lut = nn.Embedding(vocab, d_model)
243
- self.d_model = d_model
244
-
245
- def forward(self, x):
246
- return self.lut(x) * math.sqrt(self.d_model)
247
-
248
- class PositionalEncoding(nn.Module):
249
- def __init__(self, d_model, dropout, max_len=5000):
250
- super().__init__()
251
- self.dropout = nn.Dropout(p=dropout)
252
- pe = torch.zeros(max_len, d_model, device=DEVICE)
253
- position = torch.arange(0., max_len, device=DEVICE).unsqueeze(1)
254
- div_term = torch.exp(torch.arange(0., d_model, 2, device=DEVICE) * -(math.log(10000.0) / d_model))
255
- pe[:, 0::2] = torch.sin(position * div_term)
256
- pe[:, 1::2] = torch.cos(position * div_term)
257
- pe = pe.unsqueeze(0)
258
- self.register_buffer('pe', pe)
259
-
260
- def forward(self, x):
261
- x = x + self.pe[:, :x.size(1)].requires_grad_(False)
262
- return self.dropout(x)
263
-
264
- class Generator(nn.Module):
265
- def __init__(self, d_model, vocab):
266
- super().__init__()
267
- self.proj = nn.Linear(d_model, vocab)
268
-
269
- def forward(self, x):
270
- return nn.functional.log_softmax(self.proj(x), dim=-1)
271
-
272
- def create_model(src_vocab, tgt_vocab, N, d_model, d_ff, h, dropout=0.1):
273
- attn = MultiHeadedAttention(h, d_model).to(DEVICE)
274
- ff = PositionwiseFeedForward(d_model, d_ff, dropout).to(DEVICE)
275
- pos = PositionalEncoding(d_model, dropout).to(DEVICE)
276
- model = Transformer(
277
- Encoder(EncoderLayer(d_model, deepcopy(attn), deepcopy(ff), dropout).to(DEVICE), N).to(DEVICE),
278
- Decoder(DecoderLayer(d_model, deepcopy(attn), deepcopy(attn), deepcopy(ff), dropout).to(DEVICE), N).to(DEVICE),
279
- nn.Sequential(Embeddings(d_model, src_vocab).to(DEVICE), deepcopy(pos)),
280
- nn.Sequential(Embeddings(d_model, tgt_vocab).to(DEVICE), deepcopy(pos)),
281
- Generator(d_model, tgt_vocab)).to(DEVICE)
282
- for p in model.parameters():
283
- if p.dim() > 1:
284
- nn.init.xavier_uniform_(p)
285
- return model
286
-
287
- class En2FrTransformer(PreTrainedModel):
288
- config_class = En2FrConfig
289
-
290
- def __init__(self, config):
291
- super().__init__(config)
292
- self.model = create_model(
293
- src_vocab=config.src_vocab,
294
- tgt_vocab=config.tgt_vocab,
295
- N=config.N,
296
- d_model=config.d_model,
297
- d_ff=config.d_ff,
298
- h=config.h,
299
- dropout=config.dropout
300
- )
301
-
302
- def forward(self, src, tgt, src_mask, tgt_mask):
303
- return self.model(src, tgt, src_mask, tgt_mask)
304
-
305
  # Model loading function
306
  @st.cache_resource
307
  def load_model(hf_token):
@@ -312,15 +80,18 @@ def load_model(hf_token):
312
 
313
  login(token=hf_token)
314
 
315
- # Load tokenizer (assuming a tokenizer was saved with the model)
316
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
317
 
318
- # Load the custom model
319
- model = En2FrTransformer.from_pretrained(
 
320
  MODEL_NAME,
321
- token=hf_token
 
 
 
322
  )
323
- model.to(DEVICE) # Ensure model is on the correct device
324
 
325
  return model, tokenizer
326
 
@@ -328,40 +99,39 @@ def load_model(hf_token):
328
  st.error(f"🤖 Model loading failed: {str(e)}")
329
  return None
330
 
331
- # Simple tokenization function (placeholder, since we don't have the actual vocab)
332
- def tokenize_text(text, tokenizer, max_length=10):
333
- # This is a placeholder; in a real scenario, you'd use the tokenizer's vocabulary
334
- # For now, we'll create dummy token IDs (0 for padding, 1 for start, 2 for end, 3+ for words)
335
- words = text.split()
336
- token_ids = [1] + [i + 3 for i in range(min(len(words), max_length - 2))] + [2]
337
- if len(token_ids) < max_length:
338
- token_ids += [0] * (max_length - len(token_ids))
339
- return torch.tensor([token_ids], dtype=torch.long, device=DEVICE)
340
-
341
- # Generation function for translation (custom inference loop)
342
  def generate_translation(input_text, model, tokenizer):
343
- model.eval()
344
- with torch.no_grad():
345
- # Tokenize input (source) and target (start with a dummy start token)
346
- src = tokenize_text(input_text, tokenizer)
347
- tgt = torch.tensor([[1]], dtype=torch.long, device=DEVICE) # Start token
348
- src_mask = (src != 0).unsqueeze(-2)
349
- max_length = 10 # Adjust as needed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350
 
351
- # Generate translation token by token
352
- for _ in range(max_length - 1):
353
- tgt_mask = make_std_mask(tgt, pad=0)
354
- output = model(src, tgt, src_mask, tgt_mask)
355
- output = model.model.generator(output[:, -1, :]) # Get logits for the last token
356
- next_token = torch.argmax(output, dim=-1).unsqueeze(0)
357
- tgt = torch.cat((tgt, next_token), dim=1)
358
- if next_token.item() == 2: # End token
359
- break
360
 
361
- # Convert token IDs back to text (placeholder)
362
- # In a real scenario, you'd use tokenizer.decode()
363
- translation = " ".join([f"word{i-3}" if i >= 3 else "<start>" if i == 1 else "<end>" for i in tgt[0].tolist()])
364
  return translation
 
 
 
365
 
366
  # Display chat messages
367
  for message in st.session_state.messages:
@@ -411,10 +181,10 @@ if prompt := st.chat_input("Enter text to translate into French..."):
411
  st.markdown(translation)
412
  st.session_state.messages.append({"role": "assistant", "content": translation})
413
 
414
- # Calculate performance metrics (simplified, since we don't have real token counts)
415
  end_time = time.time()
416
- input_tokens = len(input_text.split()) # Approximate
417
- output_tokens = len(translation.split()) # Approximate
418
  speed = output_tokens / (end_time - start_time)
419
 
420
  # Calculate costs (hypothetical pricing model)
 
1
  import streamlit as st
2
+ from transformers import AutoModelForCausalLM, AutoTokenizer
3
  from huggingface_hub import login
4
  import PyPDF2
5
  import pandas as pd
6
  import torch
 
 
 
 
7
  import time
8
 
9
  # Device setup
 
17
  )
18
 
19
  # Model name
20
+ MODEL_NAME = "deepseek-ai/DeepSeek-V3-0324"
21
 
22
  # Translation prompt template
23
  TRANSLATION_PROMPT = """
 
70
  st.error(f"📄 Error processing file: {str(e)}")
71
  return ""
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  # Model loading function
74
  @st.cache_resource
75
  def load_model(hf_token):
 
80
 
81
  login(token=hf_token)
82
 
83
+ # Load tokenizer
84
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=hf_token)
85
 
86
+ # Load the model with appropriate dtype for CPU/GPU compatibility
87
+ dtype = torch.float16 if DEVICE == "cuda" else torch.float32
88
+ model = AutoModelForCausalLM.from_pretrained(
89
  MODEL_NAME,
90
+ token=hf_token,
91
+ torch_dtype=dtype,
92
+ device_map="auto", # Automatically maps to CPU or GPU
93
+ quantization_config=None # Disable FP8 quantization
94
  )
 
95
 
96
  return model, tokenizer
97
 
 
99
  st.error(f"🤖 Model loading failed: {str(e)}")
100
  return None
101
 
102
+ # Generation function for translation
 
 
 
 
 
 
 
 
 
 
103
  def generate_translation(input_text, model, tokenizer):
104
+ try:
105
+ # Prepare the prompt
106
+ full_prompt = TRANSLATION_PROMPT.format(input_text=input_text)
107
+
108
+ # Tokenize the input
109
+ inputs = tokenizer(full_prompt, return_tensors="pt", padding=True, truncation=True, max_length=512)
110
+ inputs = inputs.to(DEVICE)
111
+
112
+ # Generate translation
113
+ model.eval()
114
+ with torch.no_grad():
115
+ outputs = model.generate(
116
+ input_ids=inputs["input_ids"],
117
+ attention_mask=inputs["attention_mask"],
118
+ max_new_tokens=512,
119
+ temperature=0.7,
120
+ top_p=0.9,
121
+ repetition_penalty=1.1,
122
+ do_sample=True,
123
+ num_return_sequences=1
124
+ )
125
 
126
+ # Decode the output
127
+ translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
 
 
 
 
 
 
128
 
129
+ # Extract the French translation part (after the prompt)
130
+ translation = translation.split("**French translation:**")[-1].strip()
 
131
  return translation
132
+
133
+ except Exception as e:
134
+ raise Exception(f"Generation error: {str(e)}")
135
 
136
  # Display chat messages
137
  for message in st.session_state.messages:
 
181
  st.markdown(translation)
182
  st.session_state.messages.append({"role": "assistant", "content": translation})
183
 
184
+ # Calculate performance metrics
185
  end_time = time.time()
186
+ input_tokens = len(tokenizer(input_text)["input_ids"])
187
+ output_tokens = len(tokenizer(translation)["input_ids"])
188
  speed = output_tokens / (end_time - start_time)
189
 
190
  # Calculate costs (hypothetical pricing model)