Spaces:
Build error
Build error
| import os | |
| os.system('pip install transformers==4.25.1') | |
| os.system('pip install sentencepiece') | |
| # workaround: install old version of pytorch since detectron2 hasn't released packages for pytorch 1.9 (issue: https://github.com/facebookresearch/detectron2/issues/3158) | |
| os.system('pip install --find-links https://download.pytorch.org/whl/torch_stable.html torch==1.8.1+cpu torchvision==0.9.1+cpu torchaudio==0.8.1 ') | |
| # install detectron2 that matches pytorch 1.8 | |
| os.system('pip install --upgrade detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cpu/torch1.8/index.html') | |
| ## install PyTesseract | |
| os.system('pip install -q pytesseract') | |
| import gradio as gr | |
| import numpy as np | |
| from transformers import LayoutXLMProcessor, LayoutLMv2ForTokenClassification | |
| from datasets import load_dataset | |
| import torch | |
| from PIL import Image, ImageDraw, ImageFont | |
| from itertools import chain | |
| processor = LayoutXLMProcessor.from_pretrained("amir22010/layoutxlm-xfund-ja") | |
| model = LayoutLMv2ForTokenClassification.from_pretrained("amir22010/layoutxlm-xfund-ja",num_labels = 7) | |
| # load image example | |
| #dataset = load_dataset("ranpox/xfund", 'xfund.ja', split="validation") | |
| #image = Image.open(dataset[0]["image"][0]).convert("RGB") | |
| image = Image.open("./ja_val_49.jpg").convert("RGB") | |
| image.save("document.jpg") | |
| # define id2label, label2color | |
| labels = [ | |
| 'O', | |
| 'B-QUESTION', | |
| 'B-ANSWER', | |
| 'B-HEADER', | |
| 'I-ANSWER', | |
| 'I-QUESTION', | |
| 'I-HEADER' | |
| ] | |
| id2label = {v: k for v, k in enumerate(labels)} | |
| label2id = {k: v for v, k in enumerate(labels)} | |
| def unnormalize_box(bbox, width, height): | |
| return [ | |
| width * (bbox[0] / 1000), | |
| height * (bbox[1] / 1000), | |
| width * (bbox[2] / 1000), | |
| height * (bbox[3] / 1000), | |
| ] | |
| def iob_to_label(label): | |
| label = label[2:] | |
| if not label: | |
| return 'other' | |
| return label | |
| label2color = {'question':'blue', 'answer':'green', 'header':'orange', 'other':'violet'} | |
| def infer(image): | |
| # Use this if you're loading images | |
| #image = Image.open(img_path).convert("RGB") | |
| #image = image.convert("RGB") # loading PDFs | |
| encoding = processor(image, return_offsets_mapping=True, return_tensors="pt", truncation=True, max_length=514)#max_positional_embeddings | |
| offset_mapping = encoding.pop('offset_mapping') | |
| outputs = model(**encoding) | |
| predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
| token_boxes = encoding.bbox.squeeze().tolist() | |
| width, height = image.size | |
| is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 | |
| true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
| true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
| draw = ImageDraw.Draw(image) | |
| font = ImageFont.load_default() | |
| for prediction, box in zip(true_predictions, true_boxes): | |
| predicted_label = iob_to_label(prediction).lower() | |
| draw.rectangle(box, outline=label2color[predicted_label]) | |
| draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
| return image | |
| title = "Interactive demo: layoutxlm-ja" | |
| description = "Demo for Microsoft's layoutxlm-ja, a Transformer for state-of-the-art document image understanding tasks. For More Information - https://huggingface.co/microsoft/layoutxlm-base. This particular model is fine-tuned on XFUND japanese, a dataset of manually annotated forms. It annotates the words appearing in the image as QUESTION/ANSWER/HEADER/OTHER. To use it, simply upload an image or use the example image below and click 'Submit'. Results will show up in a few seconds. If you want to make the output bigger, right-click on it and select 'Open image in new tab'." | |
| article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2104.08836' target='_blank'>LayoutXLM: LayoutXLM is a multilingual variant of LayoutLMv2. Pre-training for Visually-Rich Document Understanding</a> | <a href='https://github.com/microsoft/unilm' target='_blank'>Github Repo</a></p>" | |
| examples =[['document.jpg']] | |
| css = ".output-image, .input-image {height: 40rem !important; width: 100% !important;}" | |
| css = ".image-preview {height: auto !important;}" | |
| iface = gr.Interface(fn=infer, | |
| inputs=gr.inputs.Image(type="pil"), | |
| outputs=gr.outputs.Image(type="pil", label="annotated image"), | |
| title=title, | |
| description=description, | |
| article=article, | |
| examples=examples, | |
| css=css, | |
| enable_queue=True) | |
| iface.launch(debug=True) |