Spaces:
Sleeping
Sleeping
Refactor Dockerfile for improved dependency installation and update Streamlit app to handle SpeechBrain imports with fallbacks for better compatibility
Browse files- Dockerfile +12 -3
- requirements.txt +2 -1
- src/streamlit_app.py +55 -15
Dockerfile
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
FROM python:3.9
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
@@ -34,9 +34,18 @@ ENV PIP_RETRIES=3
|
|
| 34 |
|
| 35 |
# Copy requirements and install Python dependencies
|
| 36 |
COPY requirements.txt ./
|
|
|
|
|
|
|
| 37 |
RUN pip install --upgrade pip && \
|
| 38 |
-
pip install --
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Copy source code
|
| 42 |
COPY src/ ./src/
|
|
|
|
| 1 |
+
FROM python:3.9
|
| 2 |
|
| 3 |
WORKDIR /app
|
| 4 |
|
|
|
|
| 34 |
|
| 35 |
# Copy requirements and install Python dependencies
|
| 36 |
COPY requirements.txt ./
|
| 37 |
+
|
| 38 |
+
# First install torch and torchaudio separately for better compatibility
|
| 39 |
RUN pip install --upgrade pip && \
|
| 40 |
+
pip install torch==2.0.1 torchaudio==2.0.2 --index-url https://download.pytorch.org/whl/cpu
|
| 41 |
+
|
| 42 |
+
# Then install the rest of the requirements with retries
|
| 43 |
+
RUN pip install --no-cache-dir -r requirements.txt || \
|
| 44 |
+
(sleep 2 && pip install --no-cache-dir -r requirements.txt) || \
|
| 45 |
+
(sleep 5 && pip install --no-cache-dir -r requirements.txt --use-deprecated=legacy-resolver)
|
| 46 |
+
|
| 47 |
+
# Install SpeechBrain directly using Git for better compatibility
|
| 48 |
+
RUN pip install git+https://github.com/speechbrain/[email protected]
|
| 49 |
|
| 50 |
# Copy source code
|
| 51 |
COPY src/ ./src/
|
requirements.txt
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
streamlit==1.31.0
|
| 2 |
yt_dlp==2023.11.16
|
| 3 |
-
|
|
|
|
| 4 |
torch==2.0.1
|
| 5 |
torchaudio==2.0.2
|
| 6 |
# Pin transformers to version that has AutoProcessor
|
|
|
|
| 1 |
streamlit==1.31.0
|
| 2 |
yt_dlp==2023.11.16
|
| 3 |
+
# Use a specific stable version of SpeechBrain
|
| 4 |
+
speechbrain==0.5.14
|
| 5 |
torch==2.0.1
|
| 6 |
torchaudio==2.0.2
|
| 7 |
# Pin transformers to version that has AutoProcessor
|
src/streamlit_app.py
CHANGED
|
@@ -6,7 +6,30 @@ import librosa
|
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
import sys
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Handle potential compatibility issues with transformers
|
| 11 |
try:
|
| 12 |
from transformers import AutoProcessor, AutoModelForAudioClassification
|
|
@@ -117,10 +140,19 @@ def extract_audio(video_path="video.mp4", audio_path="audio.wav"):
|
|
| 117 |
class AccentDetector:
|
| 118 |
def __init__(self):
|
| 119 |
# Initialize the language identification model
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
# Initialize the English accent classifier - using VoxLingua107 for now
|
| 125 |
# In production, you'd use a more specialized accent model
|
| 126 |
try:
|
|
@@ -133,24 +165,32 @@ class AccentDetector:
|
|
| 133 |
# Fall back to using feature_extractor directly if AutoProcessor is not available
|
| 134 |
from transformers import AutoFeatureExtractor
|
| 135 |
self.processor = AutoFeatureExtractor.from_pretrained(self.model_name)
|
| 136 |
-
|
| 137 |
-
self.model = AutoModelForAudioClassification.from_pretrained(self.model_name)
|
| 138 |
self.have_accent_model = True
|
| 139 |
except Exception as e:
|
| 140 |
st.warning(f"Could not load accent model: {str(e)}")
|
| 141 |
self.have_accent_model = False
|
| 142 |
-
|
| 143 |
def is_english(self, audio_path, threshold=0.7):
|
| 144 |
"""
|
| 145 |
Determine if the speech is English and return confidence score
|
| 146 |
"""
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
def classify_accent(self, audio_path):
|
| 156 |
"""
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
import torch
|
| 8 |
import sys
|
| 9 |
+
|
| 10 |
+
# Global flag for SpeechBrain availability
|
| 11 |
+
HAS_SPEECHBRAIN = False
|
| 12 |
+
|
| 13 |
+
# Handle SpeechBrain import with fallbacks for different versions
|
| 14 |
+
try:
|
| 15 |
+
# Try the new path first (SpeechBrain 1.0+)
|
| 16 |
+
from speechbrain.inference.classifiers import EncoderClassifier
|
| 17 |
+
HAS_SPEECHBRAIN = True
|
| 18 |
+
except ImportError:
|
| 19 |
+
try:
|
| 20 |
+
# Try the legacy path
|
| 21 |
+
from speechbrain.pretrained.interfaces import EncoderClassifier
|
| 22 |
+
HAS_SPEECHBRAIN = True
|
| 23 |
+
except ImportError:
|
| 24 |
+
try:
|
| 25 |
+
# Try the very old path
|
| 26 |
+
from speechbrain.pretrained import EncoderClassifier
|
| 27 |
+
HAS_SPEECHBRAIN = True
|
| 28 |
+
except ImportError:
|
| 29 |
+
# If all fail, we'll handle this later in the code
|
| 30 |
+
st.error("⚠️ Unable to import SpeechBrain. Limited functionality available.")
|
| 31 |
+
EncoderClassifier = None
|
| 32 |
+
|
| 33 |
# Handle potential compatibility issues with transformers
|
| 34 |
try:
|
| 35 |
from transformers import AutoProcessor, AutoModelForAudioClassification
|
|
|
|
| 140 |
class AccentDetector:
|
| 141 |
def __init__(self):
|
| 142 |
# Initialize the language identification model
|
| 143 |
+
try:
|
| 144 |
+
if EncoderClassifier is not None:
|
| 145 |
+
self.lang_id = EncoderClassifier.from_hparams(
|
| 146 |
+
source="speechbrain/lang-id-commonlanguage_ecapa",
|
| 147 |
+
savedir="tmp_model"
|
| 148 |
+
)
|
| 149 |
+
self.have_lang_id = True
|
| 150 |
+
else:
|
| 151 |
+
st.error("SpeechBrain not available. Language identification disabled.")
|
| 152 |
+
self.have_lang_id = False
|
| 153 |
+
except Exception as e:
|
| 154 |
+
st.error(f"Error loading language ID model: {str(e)}")
|
| 155 |
+
self.have_lang_id = False
|
| 156 |
# Initialize the English accent classifier - using VoxLingua107 for now
|
| 157 |
# In production, you'd use a more specialized accent model
|
| 158 |
try:
|
|
|
|
| 165 |
# Fall back to using feature_extractor directly if AutoProcessor is not available
|
| 166 |
from transformers import AutoFeatureExtractor
|
| 167 |
self.processor = AutoFeatureExtractor.from_pretrained(self.model_name)
|
| 168 |
+
self.model = AutoModelForAudioClassification.from_pretrained(self.model_name)
|
|
|
|
| 169 |
self.have_accent_model = True
|
| 170 |
except Exception as e:
|
| 171 |
st.warning(f"Could not load accent model: {str(e)}")
|
| 172 |
self.have_accent_model = False
|
| 173 |
+
|
| 174 |
def is_english(self, audio_path, threshold=0.7):
|
| 175 |
"""
|
| 176 |
Determine if the speech is English and return confidence score
|
| 177 |
"""
|
| 178 |
+
if not hasattr(self, 'have_lang_id') or not self.have_lang_id:
|
| 179 |
+
# If language ID model is not available, assume English
|
| 180 |
+
st.warning("Language identification is not available. Assuming English speech.")
|
| 181 |
+
return True, "en", 1.0
|
| 182 |
+
|
| 183 |
+
try:
|
| 184 |
+
out_prob, score, index, lang = self.lang_id.classify_file(audio_path)
|
| 185 |
+
score = float(score)
|
| 186 |
+
|
| 187 |
+
# Check if language is English (slightly fuzzy match)
|
| 188 |
+
is_english = "eng" in lang.lower() or "en-" in lang.lower() or lang.lower() == "en"
|
| 189 |
+
|
| 190 |
+
return is_english, lang, score
|
| 191 |
+
except Exception as e:
|
| 192 |
+
st.warning(f"Error identifying language: {str(e)}. Assuming English speech.")
|
| 193 |
+
return True, "en", 0.5
|
| 194 |
|
| 195 |
def classify_accent(self, audio_path):
|
| 196 |
"""
|