amitca75 commited on
Commit
46ad379
Β·
verified Β·
1 Parent(s): 39fec4c

Sync App files

Browse files
Files changed (3) hide show
  1. README.md +4 -6
  2. drug_app.py +58 -0
  3. requirements.txt +2 -0
README.md CHANGED
@@ -2,12 +2,10 @@
2
  title: Drug Classification
3
  emoji: πŸ’Š
4
  colorFrom: yellow
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 4.41.0
8
- app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
2
  title: Drug Classification
3
  emoji: πŸ’Š
4
  colorFrom: yellow
5
+ colorTo: red
6
  sdk: gradio
7
+ sdk_version: 4.16.0
8
+ app_file: drug_app.py
9
  pinned: false
10
  license: apache-2.0
11
+ ---
 
 
drug_app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import skops.io as sio
3
+ from skops.io import get_untrusted_types
4
+
5
+ pipe = sio.load("./Model/drug_pipeline.skops", trusted=get_untrusted_types(file="Model/drug_pipeline.skops"))
6
+
7
+
8
+ def predict_drug(age, sex, blood_pressure, cholesterol, na_to_k_ratio):
9
+ """Predict drugs based on patient features.
10
+
11
+ Args:
12
+ age (int): Age of patient
13
+ sex (str): Sex of patient
14
+ blood_pressure (str): Blood pressure level
15
+ cholesterol (str): Cholesterol level
16
+ na_to_k_ratio (float): Ratio of sodium to potassium in blood
17
+
18
+ Returns:
19
+ str: Predicted drug label
20
+ """
21
+ features = [age, sex, blood_pressure, cholesterol, na_to_k_ratio]
22
+ predicted_drug = pipe.predict([features])[0]
23
+
24
+ label = f"Predicted Drug: {predicted_drug}"
25
+ return label
26
+
27
+
28
+ inputs = [
29
+ gr.Slider(15, 74, step=1, label="Age"),
30
+ gr.Radio(["M", "F"], label="Sex"),
31
+ gr.Radio(["HIGH", "LOW", "NORMAL"], label="Blood Pressure"),
32
+ gr.Radio(["HIGH", "NORMAL"], label="Cholesterol"),
33
+ gr.Slider(6.2, 38.2, step=0.1, label="Na_to_K"),
34
+ ]
35
+ outputs = [gr.Label(num_top_classes=5)]
36
+
37
+ examples = [
38
+ [30, "M", "HIGH", "NORMAL", 15.4],
39
+ [35, "F", "LOW", "NORMAL", 8],
40
+ [50, "M", "HIGH", "HIGH", 34],
41
+ ]
42
+
43
+
44
+ title = "Drug Classification"
45
+ description = "Enter the details to correctly identify Drug type?"
46
+ article = "This app is a part of the **[Beginner's Guide to CI/CD for Machine Learning](https://www.datacamp.com/tutorial/ci-cd-for-machine-learning)**. It teaches how to automate training, evaluation, and deployment of models to Hugging Face using GitHub Actions."
47
+
48
+
49
+ gr.Interface(
50
+ fn=predict_drug,
51
+ inputs=inputs,
52
+ outputs=outputs,
53
+ examples=examples,
54
+ title=title,
55
+ description=description,
56
+ article=article,
57
+ theme=gr.themes.Soft(),
58
+ ).launch()
requirements.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ scikit-learn
2
+ skops