Spaces:
Sleeping
Sleeping
File size: 2,191 Bytes
41ba2bc d24f85a 41ba2bc b33191b 41ba2bc b4f8087 41ba2bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import os
import gradio as gr
import torch
import torchvision
from typing import Tuple, Dict
from timeit import default_timer as timer
from model import create_effnetb2_model
with open("class_names.txt", "r") as f:
class_names = [food_name.strip() for food_name in f.readlines()]
effnetb2, effnetb2_transforms = create_effnetb2_model(
num_classes=101
)
effnetb2.load_state_dict(
torch.load(f="pretrained_effnetb2_feature_extractor_food101.pth",
map_location=torch.device("cpu")) # Load the model to the CPU
)
def predict(img) -> Tuple[Dict, float]:
start_time = timer()
transformed_image = effnetb2_transforms(img).unsqueeze(dim=0)
effnetb2.eval()
with torch.inference_mode():
pred_probs = torch.softmax(effnetb2(transformed_image), dim=1)
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
end_time = timer()
pred_time = round(end_time-start_time, 4)
return pred_labels_and_probs, pred_time
title = "Food101 Classification App 🍔"
description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model trained on [Food101 dataset](https://pytorch.org/vision/main/generated/torchvision.datasets.Food101.html) which classifies 101 different food categories."
article = "How to Use: Upload a food image in the upload section above or select an images from the 'Examples' section. " \
"Click on the 'Submit' button and the model will detect which" \
"food catagory the image belongs to."
example_list = [["examples/" + example] for example in os.listdir("examples")]
food101_app = gr.Interface(fn=predict,
inputs=gr.Image(type="pil"),
outputs=[gr.Label(num_top_classes=5, label="Predictions"),
gr.Number(label="Prediction Time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
food101_app.launch()
|