import os import gradio as gr import torch import torchvision from typing import Tuple, Dict from timeit import default_timer as timer from model import create_effnetb2_model with open("class_names.txt", "r") as f: class_names = [food_name.strip() for food_name in f.readlines()] effnetb2, effnetb2_transforms = create_effnetb2_model( num_classes=101 ) effnetb2.load_state_dict( torch.load(f="pretrained_effnetb2_feature_extractor_food101.pth", map_location=torch.device("cpu")) # Load the model to the CPU ) def predict(img) -> Tuple[Dict, float]: start_time = timer() transformed_image = effnetb2_transforms(img).unsqueeze(dim=0) effnetb2.eval() with torch.inference_mode(): pred_probs = torch.softmax(effnetb2(transformed_image), dim=1) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} end_time = timer() pred_time = round(end_time-start_time, 4) return pred_labels_and_probs, pred_time title = "Food101 Classification App 🍔" description = "An [EfficientNetB2 feature extractor](https://pytorch.org/vision/main/models/generated/torchvision.models.efficientnet_b2.html#torchvision.models.efficientnet_b2) computer vision model trained on [Food101 dataset](https://pytorch.org/vision/main/generated/torchvision.datasets.Food101.html) which classifies 101 different food categories." article = "How to Use: Upload a food image in the upload section above or select an images from the 'Examples' section. " \ "Click on the 'Submit' button and the model will detect which" \ "food catagory the image belongs to." example_list = [["examples/" + example] for example in os.listdir("examples")] food101_app = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=5, label="Predictions"), gr.Number(label="Prediction Time (s)")], examples=example_list, title=title, description=description, article=article) food101_app.launch()