Amit Kumar commited on
Commit
df7b2e1
Β·
1 Parent(s): fde6b3b

update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -7
app.py CHANGED
@@ -7,12 +7,10 @@ from torchvision import transforms
7
  from timeit import default_timer as timer
8
  from typing import Tuple, Dict
9
 
10
- # Setup class names
11
- class_names = ["Smiling", "Not Smiling",]
12
 
13
- ### 2. Model and transforms preparation ###
14
 
15
- model = torch.load(f="smile_classifier/smile_classifier.pth")
16
 
17
  transform = transforms.Compose([
18
  transforms.CenterCrop(size=[178, 178]),
@@ -20,7 +18,7 @@ transform = transforms.Compose([
20
  transforms.ToTensor()
21
  ])
22
 
23
- ### 3. Predict function ###
24
 
25
  # Create predict function
26
  def predict(img) -> Tuple[Dict, float]:
@@ -50,7 +48,7 @@ def predict(img) -> Tuple[Dict, float]:
50
  # Return the prediction dictionary and prediction time
51
  return pred_labels_and_probs, pred_time
52
 
53
- ### 4. Gradio app ###
54
 
55
  # Create title, description and article strings
56
  title = "Smile Classifier πŸ™‚πŸ˜ŠπŸ˜ƒ"
@@ -59,7 +57,7 @@ article = "Please select an image from provided examples and submit, the model w
59
  is smiling or not and will also provide prediction probabilities."
60
 
61
  # Create examples list from "examples/" directory
62
- example_list = [["smile_classifier/examples/" + example] for example in os.listdir("smile_classifier/examples")]
63
 
64
  #Create the Gradio demo
65
  demo = gr.Interface(fn=predict, # mapping function from input to output
 
7
  from timeit import default_timer as timer
8
  from typing import Tuple, Dict
9
 
 
 
10
 
11
+ ### Model and transforms preparation ###
12
 
13
+ model = torch.load(f="smile_classifier.pth")
14
 
15
  transform = transforms.Compose([
16
  transforms.CenterCrop(size=[178, 178]),
 
18
  transforms.ToTensor()
19
  ])
20
 
21
+ ### Predict function ###
22
 
23
  # Create predict function
24
  def predict(img) -> Tuple[Dict, float]:
 
48
  # Return the prediction dictionary and prediction time
49
  return pred_labels_and_probs, pred_time
50
 
51
+ ### Gradio app ###
52
 
53
  # Create title, description and article strings
54
  title = "Smile Classifier πŸ™‚πŸ˜ŠπŸ˜ƒ"
 
57
  is smiling or not and will also provide prediction probabilities."
58
 
59
  # Create examples list from "examples/" directory
60
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
61
 
62
  #Create the Gradio demo
63
  demo = gr.Interface(fn=predict, # mapping function from input to output