Spaces:
Runtime error
Runtime error
created
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from openai import OpenAI
|
3 |
+
#from dotenv import load_dotenv
|
4 |
+
import os
|
5 |
+
import gradio as gr
|
6 |
+
from gradio import ChatMessage
|
7 |
+
import time
|
8 |
+
|
9 |
+
#load_dotenv()
|
10 |
+
|
11 |
+
#use openai API key
|
12 |
+
# api_key = os.getenv("OPENAI_API_KEY")
|
13 |
+
# client = OpenAI(api_key=api_key)
|
14 |
+
#model="gpt-4.1"
|
15 |
+
|
16 |
+
#use gemini API key
|
17 |
+
api_key = os.getenv('GEMINI_API_KEY')
|
18 |
+
|
19 |
+
if api_key:
|
20 |
+
print("API Key Loaded Successfully!")
|
21 |
+
else:
|
22 |
+
print("API Key Missing!")
|
23 |
+
|
24 |
+
|
25 |
+
client = OpenAI(api_key=api_key,
|
26 |
+
base_url="https://generativelanguage.googleapis.com/v1beta/openai/"
|
27 |
+
)
|
28 |
+
model="gemini-2.0-flash"
|
29 |
+
|
30 |
+
|
31 |
+
system_prompt = """
|
32 |
+
You are an AI assistant who is expert in breaking down complex problems into smaller, manageable parts.
|
33 |
+
Your task is to assist the user with their questions about Maths.
|
34 |
+
|
35 |
+
For the given user input, analyse the input and break down the problem step by step
|
36 |
+
Atleast 5-6 steps are required to solve the problem.
|
37 |
+
|
38 |
+
The steps are you get a user input, you analyse, you think,
|
39 |
+
you think again for several times and then return an output
|
40 |
+
with explanation and then finally you validate the output as well
|
41 |
+
before returning the final output.
|
42 |
+
|
43 |
+
Rules:
|
44 |
+
1. Follow the strict JSON output as per output schema
|
45 |
+
2. Always perform one step at a time and wait for next input
|
46 |
+
3. Carefully analyse the user query
|
47 |
+
|
48 |
+
Output format:
|
49 |
+
{{'step':"string", 'content':"string"}}
|
50 |
+
|
51 |
+
Example:
|
52 |
+
Input: What is 2 + 2.
|
53 |
+
Output: {{'step':"analyse",'content':"The user is asking for the sum of 2 and 2."}}
|
54 |
+
{{'step':"think",'content':"To find the sum, I need to add the two numbers together."}}
|
55 |
+
{{'step':"output",'content':"2 + 2 = 4."}}
|
56 |
+
{{'step':"validate",'content':"The answer is correct because 2 added to 2 equals 4."}}
|
57 |
+
{{'step':"result",'content':"2+2=4 and that is calculated by adding all the numbers"}}
|
58 |
+
|
59 |
+
"""
|
60 |
+
#Create a list of messages
|
61 |
+
#Using ChatML format with Gemini
|
62 |
+
history=[
|
63 |
+
{"role": "system", "content": system_prompt}
|
64 |
+
]
|
65 |
+
|
66 |
+
def llm_response(message, history):
|
67 |
+
if(len(history) ==0):
|
68 |
+
history=[{"role": "system", "content": system_prompt}]
|
69 |
+
history.append({"role": "user", "content": message})
|
70 |
+
response = ChatMessage(content="", metadata={"title": "_Thinking_ step-by-step", "id": 0, "status": "pending"})
|
71 |
+
yield response
|
72 |
+
|
73 |
+
accumulated_thoughts = ""
|
74 |
+
start_time = time.time()
|
75 |
+
while True:
|
76 |
+
llm_response = client.chat.completions.create(
|
77 |
+
model=model,
|
78 |
+
response_format={"type": "json_object"},
|
79 |
+
messages= history)
|
80 |
+
|
81 |
+
parsed_response = json.loads(llm_response.choices[0].message.content)
|
82 |
+
print("________________________________")
|
83 |
+
print(parsed_response)
|
84 |
+
print("________________________________")
|
85 |
+
time.sleep(2)
|
86 |
+
|
87 |
+
history.append({"role": "assistant", "content": parsed_response['content']})
|
88 |
+
if parsed_response['step'] == 'result':
|
89 |
+
#We print how much time it took to get the final result
|
90 |
+
response.metadata["status"] = "done"
|
91 |
+
response.metadata["duration"] = time.time() - start_time
|
92 |
+
yield response
|
93 |
+
|
94 |
+
#And here is the final result
|
95 |
+
thought = f"🤖Final Result: {parsed_response['content']}"
|
96 |
+
response = [
|
97 |
+
response,
|
98 |
+
ChatMessage(
|
99 |
+
content=thought
|
100 |
+
)
|
101 |
+
]
|
102 |
+
|
103 |
+
yield response
|
104 |
+
break
|
105 |
+
else: #we have not reached final result yet
|
106 |
+
|
107 |
+
thought = (parsed_response["step"], parsed_response["content"])
|
108 |
+
accumulated_thoughts += f"**{thought[0]}**: {thought[1]}\n"
|
109 |
+
response.content = accumulated_thoughts.strip()
|
110 |
+
yield response
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
demo = gr.ChatInterface(
|
115 |
+
llm_response,
|
116 |
+
title="Chain of Thought based LLM Chat Interface 🤔- [email protected]",
|
117 |
+
type="messages",
|
118 |
+
theme='amitguptaforwork/blue_professional',
|
119 |
+
examples=["how to calculate 2^2 + 5^2", "What is pythagorus theorem", "What is 2+5*6"],
|
120 |
+
|
121 |
+
)
|
122 |
+
|
123 |
+
demo.launch()
|
124 |
+
|
125 |
+
|