Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -75,9 +75,11 @@ def inference_visualization(input_img, transparency = 0.5, target_layer_number =
|
|
| 75 |
return visualization
|
| 76 |
|
| 77 |
# Callback function for the Gradio interface
|
| 78 |
-
def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
| 81 |
confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
|
| 82 |
visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
|
| 83 |
return confidence, visualization
|
|
@@ -99,14 +101,17 @@ demo = gr.Interface(
|
|
| 99 |
# examples = examples,
|
| 100 |
fn=gradio_callback, # We'll add the function later after defining all functions, # We'll add the function later after defining all functions
|
| 101 |
inputs=[
|
| 102 |
-
gr.Radio(["Yes", "No"], label="View GradCAM images?"),
|
| 103 |
-
gr.Number(label="Number of GradCAM images to view", default=5, max=10),
|
| 104 |
-
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
|
| 105 |
-
gr.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.5, label="Opacity"),
|
| 106 |
-
gr.Radio(["Yes", "No"], label="View misclassified images?"),
|
| 107 |
-
gr.Number(label="Number of misclassified images to view", default=5, min=1, max=10),
|
| 108 |
-
gr.Image(shape=(32, 32), label="Input Image")
|
| 109 |
-
|
|
|
|
|
|
|
|
|
|
| 110 |
],
|
| 111 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
|
| 112 |
examples = examples,
|
|
|
|
| 75 |
return visualization
|
| 76 |
|
| 77 |
# Callback function for the Gradio interface
|
| 78 |
+
# def gradio_callback(view_gradcam, num_gradcam_images, layer_name, opacity,
|
| 79 |
+
# view_misclassified, num_misclassified_images,
|
| 80 |
+
# input_img,submit):
|
| 81 |
+
def gradio_callback(input_img, transparency = 0.5, target_layer_number = -1):
|
| 82 |
+
|
| 83 |
confidence = inference_confidences(input_img, transparency = 0.5, target_layer_number = -1)
|
| 84 |
visualization = inference_visualization(input_img, transparency = 0.5, target_layer_number = -1)
|
| 85 |
return confidence, visualization
|
|
|
|
| 101 |
# examples = examples,
|
| 102 |
fn=gradio_callback, # We'll add the function later after defining all functions, # We'll add the function later after defining all functions
|
| 103 |
inputs=[
|
| 104 |
+
# gr.Radio(["Yes", "No"], label="View GradCAM images?"),
|
| 105 |
+
# gr.Number(label="Number of GradCAM images to view", default=5, max=10),
|
| 106 |
+
# gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?"),
|
| 107 |
+
# gr.Slider(minimum=0.1, maximum=1.0, step=0.1, default=0.5, label="Opacity"),
|
| 108 |
+
# gr.Radio(["Yes", "No"], label="View misclassified images?"),
|
| 109 |
+
# gr.Number(label="Number of misclassified images to view", default=5, min=1, max=10),
|
| 110 |
+
# gr.Image(shape=(32, 32), label="Input Image")
|
| 111 |
+
gr.Image(shape=(32, 32), label="Input Image"),
|
| 112 |
+
gr.Slider(0, 1, value = 0.5, label="Opacity of GradCAM"),
|
| 113 |
+
gr.Slider(-2, -1, value = -2, step=1, label="Which Layer?")
|
| 114 |
+
|
| 115 |
],
|
| 116 |
outputs = [gr.Label(num_top_classes=3), gr.Image(shape=(32, 32), label="Output").style(width=128, height=128)],
|
| 117 |
examples = examples,
|