Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from transformers import pipeline
|
6 |
+
|
7 |
+
# Load model directly using the pipeline
|
8 |
+
pipe = pipeline("fill-mask", model="microsoft/deberta-v3-base")
|
9 |
+
|
10 |
+
# Load environment variables
|
11 |
+
load_dotenv()
|
12 |
+
|
13 |
+
# Streamlit app configuration
|
14 |
+
st.set_page_config(page_title="AI Healthcare Status Checker", page_icon="π§ ")
|
15 |
+
st.title("π§ AI Healthcare Status Checker")
|
16 |
+
|
17 |
+
# User input section
|
18 |
+
with st.form("health_inputs"):
|
19 |
+
age = st.slider("Age", 1, 100, 25)
|
20 |
+
weight = st.number_input("Weight (kg)", min_value=1.0, value=70.0)
|
21 |
+
height = st.number_input("Height (cm)", min_value=50.0, value=170.0)
|
22 |
+
systolic = st.slider("Systolic BP", 80, 200, 120)
|
23 |
+
diastolic = st.slider("Diastolic BP", 50, 130, 80)
|
24 |
+
heart_rate = st.slider("Heart Rate (bpm)", 40, 200, 72)
|
25 |
+
submitted = st.form_submit_button("Check with AI")
|
26 |
+
|
27 |
+
# Calculate BMI
|
28 |
+
def calculate_bmi(height, weight):
|
29 |
+
height_m = height / 100
|
30 |
+
return weight / (height_m ** 2)
|
31 |
+
|
32 |
+
# API configuration
|
33 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
34 |
+
API_URL = "https://api-inference.huggingface.co/models/cardioai/risk-prediction-v1"
|
35 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"} if HF_TOKEN else {}
|
36 |
+
|
37 |
+
def query_api(payload):
|
38 |
+
try:
|
39 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=30)
|
40 |
+
response.raise_for_status() # Raise an error for bad HTTP response codes
|
41 |
+
return response.json()
|
42 |
+
except requests.exceptions.RequestException as e:
|
43 |
+
st.error(f"API request failed: {str(e)}")
|
44 |
+
return None
|
45 |
+
|
46 |
+
if submitted:
|
47 |
+
bmi = calculate_bmi(height, weight)
|
48 |
+
st.write(f"π Calculated BMI: {bmi:.2f}")
|
49 |
+
|
50 |
+
# Prepare input data for the AI model
|
51 |
+
input_data = {
|
52 |
+
"inputs": {
|
53 |
+
"age": age,
|
54 |
+
"bmi": round(bmi, 2),
|
55 |
+
"systolic": systolic,
|
56 |
+
"diastolic": diastolic,
|
57 |
+
"heart_rate": heart_rate
|
58 |
+
}
|
59 |
+
}
|
60 |
+
|
61 |
+
with st.spinner("Analyzing your health data..."):
|
62 |
+
output = query_api(input_data)
|
63 |
+
|
64 |
+
if output:
|
65 |
+
try:
|
66 |
+
label = output[0].get('label', '')
|
67 |
+
score = output[0].get('score', 0)
|
68 |
+
|
69 |
+
if label == 'LABEL_0':
|
70 |
+
st.success(f"β
You are Healthy! (Confidence: {score:.2f})")
|
71 |
+
else:
|
72 |
+
st.warning(f"β οΈ Health Needs Attention! (Confidence: {score:.2f})")
|
73 |
+
|
74 |
+
# Additional health tips
|
75 |
+
if bmi > 25:
|
76 |
+
st.info("π‘ Your BMI suggests you might be overweight. Consider consulting a nutritionist.")
|
77 |
+
if systolic > 140 or diastolic > 90:
|
78 |
+
st.info("π‘ Your blood pressure is elevated. Regular monitoring is recommended.")
|
79 |
+
|
80 |
+
except (KeyError, IndexError) as e:
|
81 |
+
st.error(f"Error processing API response: {str(e)}")
|