translator_app2 / app.py
amnashoukat's picture
Create app.py
f3e7e87 verified
raw
history blame
2.07 kB
# STEP 1: Install required libraries
!pip install transformers sentencepiece gradio -q
# STEP 2: Import libraries
from transformers import MarianMTModel, MarianTokenizer
import gradio as gr
# STEP 3: Load models and tokenizers for both directions
en_to_ur_model_name = "Helsinki-NLP/opus-mt-en-ur"
ur_to_en_model_name = "Helsinki-NLP/opus-mt-ur-en"
en_to_ur_tokenizer = MarianTokenizer.from_pretrained(en_to_ur_model_name)
en_to_ur_model = MarianMTModel.from_pretrained(en_to_ur_model_name)
ur_to_en_tokenizer = MarianTokenizer.from_pretrained(ur_to_en_model_name)
ur_to_en_model = MarianMTModel.from_pretrained(ur_to_en_model_name)
# STEP 4: Translation functions
def translate_en_to_ur(text):
if not text.strip():
return "Please enter some English text."
inputs = en_to_ur_tokenizer(text, return_tensors="pt", padding=True)
translated = en_to_ur_model.generate(**inputs)
urdu_text = en_to_ur_tokenizer.decode(translated[0], skip_special_tokens=True)
return urdu_text
def translate_ur_to_en(text):
if not text.strip():
return "براہ کرم کچھ اردو متن درج کریں۔"
inputs = ur_to_en_tokenizer(text, return_tensors="pt", padding=True)
translated = ur_to_en_model.generate(**inputs)
english_text = ur_to_en_tokenizer.decode(translated[0], skip_special_tokens=True)
return english_text
# STEP 5: Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## English ↔ Urdu Translator")
with gr.Tab("English to Urdu"):
en_input = gr.Textbox(label="Enter English Text")
en_output = gr.Textbox(label="Urdu Translation")
en_button = gr.Button("Translate")
en_button.click(fn=translate_en_to_ur, inputs=en_input, outputs=en_output)
with gr.Tab("Urdu to English"):
ur_input = gr.Textbox(label="اردو متن درج کریں")
ur_output = gr.Textbox(label="English Translation")
ur_button = gr.Button("Translate")
ur_button.click(fn=translate_ur_to_en, inputs=ur_input, outputs=ur_output)
# STEP 6: Launch
demo.launch()