Spaces:
Sleeping
Sleeping
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
import gradio as gr | |
# Load English to Urdu model | |
en_ur_model_name = "Helsinki-NLP/opus-mt-en-ur" | |
en_ur_tokenizer = AutoTokenizer.from_pretrained(en_ur_model_name) | |
en_ur_model = AutoModelForSeq2SeqLM.from_pretrained(en_ur_model_name) | |
# Load Urdu to English model | |
ur_en_model_name = "Helsinki-NLP/opus-mt-ur-en" | |
ur_en_tokenizer = AutoTokenizer.from_pretrained(ur_en_model_name) | |
ur_en_model = AutoModelForSeq2SeqLM.from_pretrained(ur_en_model_name) | |
# Translation function | |
def translate(text, direction): | |
if not text.strip(): | |
return "Please enter some text." | |
if direction == "English to Urdu": | |
inputs = en_ur_tokenizer.encode(text, return_tensors="pt") | |
outputs = en_ur_model.generate(inputs, max_length=512, num_beams=4, early_stopping=True) | |
result = en_ur_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
else: # Urdu to English | |
inputs = ur_en_tokenizer.encode(text, return_tensors="pt") | |
outputs = ur_en_model.generate(inputs, max_length=512, num_beams=4, early_stopping=True) | |
result = ur_en_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return result | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=translate, | |
inputs=[ | |
gr.Textbox(label="Enter text", lines=3), | |
gr.Radio(["English to Urdu", "Urdu to English"], label="Translation Direction") | |
], | |
outputs=gr.Textbox(label="Translated text"), | |
title="English β Urdu Translator", | |
description="Translate between English and Urdu using Helsinki-NLP models" | |
) | |
interface.launch() | |