translator_new / app.py
amnashoukat's picture
Create app.py
1e90925 verified
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import gradio as gr
# Load English to Urdu model
en_ur_model_name = "Helsinki-NLP/opus-mt-en-ur"
en_ur_tokenizer = AutoTokenizer.from_pretrained(en_ur_model_name)
en_ur_model = AutoModelForSeq2SeqLM.from_pretrained(en_ur_model_name)
# Load Urdu to English model
ur_en_model_name = "Helsinki-NLP/opus-mt-ur-en"
ur_en_tokenizer = AutoTokenizer.from_pretrained(ur_en_model_name)
ur_en_model = AutoModelForSeq2SeqLM.from_pretrained(ur_en_model_name)
# Translation function
def translate(text, direction):
if not text.strip():
return "Please enter some text."
if direction == "English to Urdu":
inputs = en_ur_tokenizer.encode(text, return_tensors="pt")
outputs = en_ur_model.generate(inputs, max_length=512, num_beams=4, early_stopping=True)
result = en_ur_tokenizer.decode(outputs[0], skip_special_tokens=True)
else: # Urdu to English
inputs = ur_en_tokenizer.encode(text, return_tensors="pt")
outputs = ur_en_model.generate(inputs, max_length=512, num_beams=4, early_stopping=True)
result = ur_en_tokenizer.decode(outputs[0], skip_special_tokens=True)
return result
# Gradio Interface
interface = gr.Interface(
fn=translate,
inputs=[
gr.Textbox(label="Enter text", lines=3),
gr.Radio(["English to Urdu", "Urdu to English"], label="Translation Direction")
],
outputs=gr.Textbox(label="Translated text"),
title="English ↔ Urdu Translator",
description="Translate between English and Urdu using Helsinki-NLP models"
)
interface.launch()