ThreadAbort commited on
Commit
607becf
·
1 Parent(s): 349493b
Files changed (1) hide show
  1. app.py +463 -155
app.py CHANGED
@@ -1,9 +1,16 @@
1
  import gradio as gr
2
- import spaces
3
  import torch
4
  import numpy as np
5
- from typing import Tuple, List
 
 
 
6
  import random
 
 
 
 
 
7
 
8
  # Try importing Stable Diffusion dependencies
9
  try:
@@ -13,6 +20,14 @@ except ImportError:
13
  print("Warning: diffusers package not available. Artistic visualization will be disabled.")
14
  STABLE_DIFFUSION_AVAILABLE = False
15
 
 
 
 
 
 
 
 
 
16
  # Initialize Stable Diffusion only if available
17
  pipe = None
18
  if STABLE_DIFFUSION_AVAILABLE:
@@ -24,32 +39,269 @@ if STABLE_DIFFUSION_AVAILABLE:
24
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
25
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)
26
  pipe = pipe.to(device)
 
27
  except Exception as e:
28
- print(f"Warning: Could not initialize Stable Diffusion: {e}")
29
  STABLE_DIFFUSION_AVAILABLE = False
30
 
 
31
  MAX_SEED = np.iinfo(np.int32).max
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
 
33
  class EmotionalContext:
34
  """Implements Mem|8's emotional context structure"""
35
- def __init__(self):
36
- self.valence = torch.zeros(1).cuda() # -128 to 127: negative to positive
37
- self.arousal = torch.zeros(1).cuda() # 0 to 255: intensity level
38
- self.context = torch.zeros(1).cuda() # Contextual flags
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
- def create_wave_pattern(size: int, frequency: float, amplitude: float) -> torch.Tensor:
41
- """Create a wave pattern as described in Mem|8 paper"""
42
- t = torch.linspace(0, 2*np.pi, size).cuda()
43
- x = torch.linspace(0, 2*np.pi, size).cuda()
44
- T, X = torch.meshgrid(t, x, indexing='ij')
45
- return amplitude * torch.sin(frequency * T + X)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46
 
47
  def generate_memory_prompt(operation: str, emotion_valence: float) -> str:
48
  """Generate artistic prompts based on memory operation and emotional state"""
49
  base_prompts = {
50
  "wave_memory": "memories flowing like waves in an infinite ocean, ",
51
  "interference": "two waves of memory intersecting and creating patterns, ",
52
- "resonance": "resonating waves of consciousness forming harmonious patterns, "
 
 
 
53
  }
54
 
55
  emotion_desc = "serene and peaceful" if -20 <= emotion_valence <= 20 else \
@@ -57,73 +309,125 @@ def generate_memory_prompt(operation: str, emotion_valence: float) -> str:
57
  "dark and introspective"
58
 
59
  style = "digital art, abstract, flowing, wave patterns, "
 
 
 
 
 
 
 
 
 
60
  prompt = f"{base_prompts[operation]}{emotion_desc}, {style} ethereal, dreamlike quality"
61
  return prompt
62
 
63
- @spaces.GPU(duration=65)
64
- def quantum_memory_ops(
65
- input_size: int,
66
- operation: str,
67
- emotion_valence: float,
68
- generate_art: bool = True,
69
- seed: int = 42
70
- ) -> Tuple[str, np.ndarray, np.ndarray]:
71
- """Perform quantum-inspired memory operations using Mem|8 concepts."""
72
- # Initialize emotional context
73
- emotion = EmotionalContext()
74
- emotion.valence = torch.tensor([emotion_valence]).cuda()
75
- emotion.arousal = torch.abs(torch.tensor([emotion_valence * 2])).cuda()
76
 
77
- results = []
78
- wave_viz = None
79
- art_viz = None
 
80
 
81
- if operation == "wave_memory":
82
- # Create memory wave pattern (M = A·exp(iωt-kx)·D·E)
83
- wave = create_wave_pattern(input_size, 2.0, 1.0)
84
- emotional_mod = torch.exp(emotion.valence/128 * wave)
85
- memory_state = wave * emotional_mod
86
-
87
- results.append(f"Wave Memory Pattern Created:")
88
- results.append(f"Shape: {memory_state.shape}")
89
- results.append(f"Emotional Modulation: {emotional_mod.mean().item():.4f}")
90
- results.append(f"Memory Coherence: {torch.linalg.norm(memory_state).item():.4f}")
91
- wave_viz = memory_state.cpu().numpy()
92
-
93
- elif operation == "interference":
94
- # Create interference between two memory waves
95
- wave1 = create_wave_pattern(input_size, 2.0, 1.0)
96
- wave2 = create_wave_pattern(input_size, 3.0, 0.5)
97
- interference = wave1 + wave2
98
- emotional_weight = torch.sigmoid(emotion.valence/128) * interference
99
-
100
- results.append(f"Memory Interference Pattern:")
101
- results.append(f"Pattern Strength: {torch.max(emotional_weight).item():.4f}")
102
- results.append(f"Emotional Weight: {emotion.valence.item()/128:.4f}")
103
- wave_viz = emotional_weight.cpu().numpy()
104
-
105
- elif operation == "resonance":
106
- # Demonstrate emotional resonance patterns
107
- base_wave = create_wave_pattern(input_size, 2.0, 1.0)
108
- resonance_freq = 1.0 + torch.sigmoid(emotion.valence/128)
109
- resonant_wave = create_wave_pattern(input_size, resonance_freq.item(), 1.0)
110
- resonance = base_wave * resonant_wave
111
-
112
- results.append(f"Emotional Resonance Pattern:")
113
- results.append(f"Resonance Frequency: {resonance_freq.item():.4f}")
114
- results.append(f"Pattern Energy: {torch.sum(resonance**2).item():.4f}")
115
- wave_viz = resonance.cpu().numpy()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116
 
117
- results.append(f"\nEmotional Context:")
118
- results.append(f"Valence: {emotion.valence.item():.2f}")
119
- results.append(f"Arousal: {emotion.arousal.item():.2f}")
120
- results.append(f"Device: {wave.device}")
 
 
121
 
122
- # Generate artistic visualization if requested
123
- if generate_art and STABLE_DIFFUSION_AVAILABLE and pipe is not None:
124
- prompt = generate_memory_prompt(operation, emotion_valence)
125
  generator = torch.Generator().manual_seed(seed)
126
- art_viz = pipe(
127
  prompt=prompt,
128
  negative_prompt="text, watermark, signature, blurry, distorted",
129
  guidance_scale=1.5,
@@ -133,91 +437,95 @@ def quantum_memory_ops(
133
  generator=generator,
134
  ).images[0]
135
 
136
- results.append(f"\nArtistic Visualization:")
137
- results.append(f"Prompt: {prompt}")
138
- results.append(f"Seed: {seed}")
139
- elif generate_art:
140
- results.append(f"\nArtistic Visualization:")
141
- results.append(f"Not available - Stable Diffusion could not be initialized")
142
-
143
- return "\n".join(results), wave_viz, art_viz
144
 
145
- # Create a beautiful interface inspired by Mem|8's wave concepts
146
- with gr.Blocks(theme=gr.themes.Soft(primary_hue="purple", secondary_hue="blue")) as demo:
147
- gr.Markdown("""
148
- # 🌊 Mem|8 Wave Memory Explorer
149
-
150
- Welcome to 8b.is's memory ocean demonstration! This showcase implements concepts from our Mem|8
151
- wave-based memory architecture paper, visualizing how memories propagate and interact like waves
152
- in an ocean of consciousness.
153
-
154
- > "Memory is not a storage unit, but a living ocean of waves" - Mem|8 Paper
155
- """)
156
-
157
- with gr.Row():
158
- with gr.Column():
159
- size_input = gr.Slider(
160
- minimum=16,
161
- maximum=128,
162
- value=32,
163
- step=16,
164
- label="Memory Grid Size"
165
- )
166
- operation_input = gr.Radio(
167
- ["wave_memory", "interference", "resonance"],
168
- label="Memory Wave Operation",
169
- value="wave_memory",
170
- info="Select the type of wave-based memory operation to visualize"
171
- )
172
- emotion_input = gr.Slider(
173
- minimum=-128,
174
- maximum=127,
175
- value=0,
176
- step=1,
177
- label="Emotional Valence",
178
- info="Emotional context from negative to positive (-128 to 127)"
179
- )
180
-
181
- with gr.Accordion("Advanced Settings", open=False):
182
- generate_art = gr.Checkbox(
183
- label="Generate Artistic Visualization",
184
- value=True,
185
- info="Use Stable Diffusion to create artistic representations"
186
- )
187
- seed = gr.Slider(
188
- label="Art Generation Seed",
189
- minimum=0,
190
- maximum=MAX_SEED,
191
- step=1,
192
- value=42
193
- )
194
-
195
- run_btn = gr.Button("Generate Memory Wave", variant="primary")
196
-
197
- with gr.Column():
198
- output_text = gr.Textbox(label="Wave Analysis", lines=8)
199
- with gr.Row():
200
- wave_plot = gr.Plot(label="Wave Pattern")
201
- art_output = gr.Image(label="Artistic Visualization")
202
-
203
- run_btn.click(
204
- quantum_memory_ops,
205
- inputs=[size_input, operation_input, emotion_input, generate_art, seed],
206
- outputs=[output_text, wave_plot, art_output]
207
- )
208
 
209
- gr.Markdown("""
210
- ### 🧠 Understanding Wave Memory
 
211
 
212
- This demo visualizes three key concepts from our Mem|8 paper:
213
- 1. **Wave Memory**: Memories as propagating waves with emotional modulation
214
- 2. **Interference**: How different memories interact and combine
215
- 3. **Resonance**: Emotional resonance patterns in memory formation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
216
 
217
- The visualization shows both the mathematical wave patterns and artistic interpretations,
218
- demonstrating how emotional context affects memory formation and recall.
219
 
220
- All computations are accelerated using Hugging Face's Zero GPU technology!
221
- """)
222
 
223
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
 
2
  import torch
3
  import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ from matplotlib import cm
6
+ import plotly.graph_objects as go
7
+ from plotly.subplots import make_subplots
8
  import random
9
+ from typing import Tuple, List, Dict, Any, Optional
10
+ import time
11
+ import colorsys
12
+ import math
13
+ from PIL import Image, ImageDraw, ImageFilter
14
 
15
  # Try importing Stable Diffusion dependencies
16
  try:
 
20
  print("Warning: diffusers package not available. Artistic visualization will be disabled.")
21
  STABLE_DIFFUSION_AVAILABLE = False
22
 
23
+ # Try importing 3D visualization dependencies
24
+ try:
25
+ import plotly.express as px
26
+ PLOTLY_3D_AVAILABLE = True
27
+ except ImportError:
28
+ print("Warning: plotly.express not available. 3D visualization will be limited.")
29
+ PLOTLY_3D_AVAILABLE = False
30
+
31
  # Initialize Stable Diffusion only if available
32
  pipe = None
33
  if STABLE_DIFFUSION_AVAILABLE:
 
39
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
40
  pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(model_repo_id, subfolder="scheduler", shift=5)
41
  pipe = pipe.to(device)
42
+ print(f"✅ Stable Diffusion initialized on {device}")
43
  except Exception as e:
44
+ print(f"⚠️ Could not initialize Stable Diffusion: {e}")
45
  STABLE_DIFFUSION_AVAILABLE = False
46
 
47
+ # Constants
48
  MAX_SEED = np.iinfo(np.int32).max
49
+ DEFAULT_GRID_SIZE = 64
50
+ WAVE_TYPES = ["sine", "cosine", "gaussian", "square"]
51
+ MEMORY_OPERATIONS = [
52
+ "wave_memory",
53
+ "interference",
54
+ "resonance",
55
+ "hot_tub_mode",
56
+ "emotional_resonance",
57
+ "pattern_completion"
58
+ ]
59
+
60
+ # Color palettes for different emotional states
61
+ COLOR_PALETTES = {
62
+ "positive": ["#FF5E5B", "#D8D8F6", "#E8AA14", "#32E875", "#3C91E6"],
63
+ "neutral": ["#FAFFFD", "#A1CDF4", "#7D83FF", "#3A3042", "#080708"],
64
+ "negative": ["#1B1B1E", "#373F51", "#58A4B0", "#A9BCD0", "#D8DBE2"]
65
+ }
66
 
67
  class EmotionalContext:
68
  """Implements Mem|8's emotional context structure"""
69
+ def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
70
+ self.device = device
71
+ self.valence = torch.zeros(1).to(device) # -128 to 127: negative to positive
72
+ self.arousal = torch.zeros(1).to(device) # 0 to 255: intensity level
73
+ self.context = torch.zeros(1).to(device) # Contextual flags
74
+ self.safety = torch.ones(1).to(device) * 100 # Safety level (0-100)
75
+
76
+ # Memory blanket parameters
77
+ self.resonance_freq = torch.tensor(1.0).to(device)
78
+ self.filter_strength = torch.tensor(0.5).to(device)
79
+
80
+ # Hot tub mode parameters
81
+ self.hot_tub_active = False
82
+ self.hot_tub_temperature = torch.tensor(37.0).to(device) # Default comfortable temperature
83
+ self.hot_tub_participants = []
84
+
85
+ def update(self, valence: float, arousal: Optional[float] = None):
86
+ """Update emotional context based on valence and arousal"""
87
+ self.valence = torch.tensor([valence]).to(self.device)
88
+
89
+ # If arousal not provided, calculate it based on valence intensity
90
+ if arousal is None:
91
+ self.arousal = torch.abs(torch.tensor([valence * 2])).to(self.device)
92
+ else:
93
+ self.arousal = torch.tensor([arousal]).to(self.device)
94
+
95
+ # Update resonance frequency based on emotional state
96
+ self.resonance_freq = 1.0 + torch.sigmoid(self.valence/128)
97
+
98
+ # Update filter strength based on arousal
99
+ self.filter_strength = torch.sigmoid(self.arousal/128)
100
+
101
+ return self
102
+
103
+ def get_color_palette(self):
104
+ """Get color palette based on emotional valence"""
105
+ if self.valence.item() > 20:
106
+ return COLOR_PALETTES["positive"]
107
+ elif self.valence.item() < -20:
108
+ return COLOR_PALETTES["negative"]
109
+ else:
110
+ return COLOR_PALETTES["neutral"]
111
+
112
+ def activate_hot_tub(self, temperature: float = 37.0):
113
+ """Activate hot tub mode with specified temperature"""
114
+ self.hot_tub_active = True
115
+ self.hot_tub_temperature = torch.tensor(temperature).to(self.device)
116
+ return self
117
+
118
+ def deactivate_hot_tub(self):
119
+ """Deactivate hot tub mode"""
120
+ self.hot_tub_active = False
121
+ self.hot_tub_participants = []
122
+ return self
123
+
124
+ def add_hot_tub_participant(self, participant: str):
125
+ """Add participant to hot tub session"""
126
+ if self.hot_tub_active and participant not in self.hot_tub_participants:
127
+ self.hot_tub_participants.append(participant)
128
+ return self
129
+
130
+ def get_state_dict(self) -> Dict[str, Any]:
131
+ """Get emotional context as dictionary for display"""
132
+ return {
133
+ "valence": self.valence.item(),
134
+ "arousal": self.arousal.item(),
135
+ "resonance_frequency": self.resonance_freq.item(),
136
+ "filter_strength": self.filter_strength.item(),
137
+ "hot_tub_active": self.hot_tub_active,
138
+ "hot_tub_temperature": self.hot_tub_temperature.item() if self.hot_tub_active else None,
139
+ "hot_tub_participants": self.hot_tub_participants if self.hot_tub_active else [],
140
+ "safety_level": self.safety.item()
141
+ }
142
 
143
+ class WaveProcessor:
144
+ """Processes wave-based memory patterns"""
145
+ def __init__(self, device="cuda" if torch.cuda.is_available() else "cpu"):
146
+ self.device = device
147
+
148
+ def create_wave_pattern(self,
149
+ size: int,
150
+ frequency: float,
151
+ amplitude: float,
152
+ wave_type: str = "sine") -> torch.Tensor:
153
+ """Create a wave pattern as described in Mem|8 paper"""
154
+ t = torch.linspace(0, 2*np.pi, size).to(self.device)
155
+ x = torch.linspace(0, 2*np.pi, size).to(self.device)
156
+ T, X = torch.meshgrid(t, x, indexing='ij')
157
+
158
+ if wave_type == "sine":
159
+ return amplitude * torch.sin(frequency * T + X)
160
+ elif wave_type == "cosine":
161
+ return amplitude * torch.cos(frequency * T + X)
162
+ elif wave_type == "gaussian":
163
+ # Create a Gaussian wave pattern
164
+ sigma = size / (4 * frequency)
165
+ mu_t = size / 2
166
+ mu_x = size / 2
167
+ gauss_t = torch.exp(-((t - mu_t) ** 2) / (2 * sigma ** 2))
168
+ gauss_x = torch.exp(-((x - mu_x) ** 2) / (2 * sigma ** 2))
169
+ G_T, G_X = torch.meshgrid(gauss_t, gauss_x, indexing='ij')
170
+ return amplitude * G_T * G_X
171
+ elif wave_type == "square":
172
+ # Create a square wave pattern
173
+ square_t = torch.sign(torch.sin(frequency * t))
174
+ square_x = torch.sign(torch.sin(frequency * x))
175
+ S_T, S_X = torch.meshgrid(square_t, square_x, indexing='ij')
176
+ return amplitude * S_T * S_X
177
+ else:
178
+ # Default to sine wave
179
+ return amplitude * torch.sin(frequency * T + X)
180
+
181
+ def apply_emotional_modulation(self,
182
+ wave: torch.Tensor,
183
+ emotion: EmotionalContext) -> torch.Tensor:
184
+ """Apply emotional modulation to wave pattern"""
185
+ # Modulate wave based on emotional valence
186
+ emotional_mod = torch.exp(emotion.valence/128 * wave)
187
+ return wave * emotional_mod
188
+
189
+ def create_interference_pattern(self,
190
+ wave1: torch.Tensor,
191
+ wave2: torch.Tensor,
192
+ emotion: EmotionalContext) -> torch.Tensor:
193
+ """Create interference between two wave patterns"""
194
+ interference = wave1 + wave2
195
+ # Weight by emotional valence
196
+ emotional_weight = torch.sigmoid(emotion.valence/128) * interference
197
+ return emotional_weight
198
+
199
+ def create_resonance_pattern(self,
200
+ base_wave: torch.Tensor,
201
+ emotion: EmotionalContext) -> torch.Tensor:
202
+ """Create resonance pattern based on emotional state"""
203
+ resonant_wave = self.create_wave_pattern(
204
+ base_wave.shape[0],
205
+ emotion.resonance_freq.item(),
206
+ 1.0
207
+ )
208
+ resonance = base_wave * resonant_wave
209
+ return resonance
210
+
211
+ def apply_memory_blanket(self,
212
+ wave: torch.Tensor,
213
+ emotion: EmotionalContext) -> torch.Tensor:
214
+ """Apply memory blanket filtering as described in the paper"""
215
+ # Create a filter based on wave amplitude and emotional state
216
+ wave_amplitude = torch.abs(wave)
217
+ importance_threshold = emotion.filter_strength * wave_amplitude.mean()
218
+
219
+ # Apply the filter - keep only significant waves
220
+ filtered_wave = wave * (wave_amplitude > importance_threshold).float()
221
+ return filtered_wave
222
+
223
+ def create_hot_tub_pattern(self,
224
+ size: int,
225
+ emotion: EmotionalContext) -> torch.Tensor:
226
+ """Create a hot tub pattern for safe exploration"""
227
+ if not emotion.hot_tub_active:
228
+ return torch.zeros((size, size)).to(self.device)
229
+
230
+ # Create base wave pattern
231
+ base_wave = self.create_wave_pattern(size, 1.0, 1.0, "sine")
232
+
233
+ # Modulate based on hot tub temperature
234
+ temp_factor = emotion.hot_tub_temperature / 50.0 # Normalize to 0-1 range
235
+ temp_wave = self.create_wave_pattern(size, temp_factor.item(), 0.5, "gaussian")
236
+
237
+ # Add ripples for each participant
238
+ participant_count = len(emotion.hot_tub_participants)
239
+ if participant_count > 0:
240
+ ripple_wave = self.create_wave_pattern(
241
+ size,
242
+ 2.0 + participant_count * 0.5,
243
+ 0.3,
244
+ "gaussian"
245
+ )
246
+ hot_tub_pattern = base_wave + temp_wave + ripple_wave
247
+ else:
248
+ hot_tub_pattern = base_wave + temp_wave
249
+
250
+ # Apply safety modulation
251
+ safety_factor = emotion.safety / 100.0
252
+ return hot_tub_pattern * safety_factor
253
+
254
+ def create_pattern_completion(self,
255
+ size: int,
256
+ emotion: EmotionalContext,
257
+ completion_ratio: float = 0.5) -> Tuple[torch.Tensor, torch.Tensor]:
258
+ """Create a pattern completion demonstration"""
259
+ # Create original pattern
260
+ original = self.create_wave_pattern(size, 2.0, 1.0)
261
+
262
+ # Create mask for incomplete pattern (randomly remove portions)
263
+ mask = torch.rand(size, size).to(self.device) > completion_ratio
264
+ incomplete = original * mask
265
+
266
+ # Apply emotional context to reconstruction
267
+ emotional_weight = torch.sigmoid(emotion.valence/128)
268
+
269
+ # Simple reconstruction algorithm (in real system would be more sophisticated)
270
+ # Here we're just doing a simple interpolation
271
+ kernel_size = 3
272
+ padding = kernel_size // 2
273
+
274
+ # Create a kernel for interpolation
275
+ kernel = torch.ones(1, 1, kernel_size, kernel_size).to(self.device) / (kernel_size ** 2)
276
+
277
+ # Reshape for convolution
278
+ incomplete_reshaped = incomplete.reshape(1, 1, size, size)
279
+
280
+ # Apply convolution for interpolation
281
+ with torch.no_grad():
282
+ reconstructed = torch.nn.functional.conv2d(
283
+ incomplete_reshaped,
284
+ kernel,
285
+ padding=padding
286
+ ).reshape(size, size)
287
+
288
+ # Blend original where mask exists
289
+ reconstructed = torch.where(mask, reconstructed, original)
290
+
291
+ # Apply emotional modulation
292
+ reconstructed = reconstructed * (0.5 + emotional_weight * 0.5)
293
+
294
+ return incomplete, reconstructed
295
 
296
  def generate_memory_prompt(operation: str, emotion_valence: float) -> str:
297
  """Generate artistic prompts based on memory operation and emotional state"""
298
  base_prompts = {
299
  "wave_memory": "memories flowing like waves in an infinite ocean, ",
300
  "interference": "two waves of memory intersecting and creating patterns, ",
301
+ "resonance": "resonating waves of consciousness forming harmonious patterns, ",
302
+ "hot_tub_mode": "a safe space for exploring memories, like a warm therapeutic pool, ",
303
+ "emotional_resonance": "emotions as colorful waves interacting with memory patterns, ",
304
+ "pattern_completion": "fragmented memories being reconstructed into complete patterns, "
305
  }
306
 
307
  emotion_desc = "serene and peaceful" if -20 <= emotion_valence <= 20 else \
 
309
  "dark and introspective"
310
 
311
  style = "digital art, abstract, flowing, wave patterns, "
312
+
313
+ # Add more specific styling based on operation
314
+ if operation == "hot_tub_mode":
315
+ style += "warm colors, therapeutic atmosphere, "
316
+ elif operation == "emotional_resonance":
317
+ style += "vibrant colors, emotional energy visualization, "
318
+ elif operation == "pattern_completion":
319
+ style += "fragmented to whole transition, reconstruction, "
320
+
321
  prompt = f"{base_prompts[operation]}{emotion_desc}, {style} ethereal, dreamlike quality"
322
  return prompt
323
 
324
+ def create_wave_visualization(wave_data: np.ndarray, emotion: EmotionalContext) -> go.Figure:
325
+ """Create an interactive 3D visualization of wave data"""
326
+ # Get dimensions
327
+ n, m = wave_data.shape
 
 
 
 
 
 
 
 
 
328
 
329
+ # Create coordinate grids
330
+ x = np.linspace(0, 1, m)
331
+ y = np.linspace(0, 1, n)
332
+ X, Y = np.meshgrid(x, y)
333
 
334
+ # Get color palette based on emotional state
335
+ colors = emotion.get_color_palette()
336
+ colorscale = [[0, colors[0]],
337
+ [0.25, colors[1]],
338
+ [0.5, colors[2]],
339
+ [0.75, colors[3]],
340
+ [1, colors[4]]]
341
+
342
+ # Create 3D surface plot
343
+ fig = go.Figure(data=[go.Surface(
344
+ z=wave_data,
345
+ x=X,
346
+ y=Y,
347
+ colorscale=colorscale,
348
+ lighting=dict(
349
+ ambient=0.6,
350
+ diffuse=0.8,
351
+ fresnel=0.2,
352
+ roughness=0.5,
353
+ specular=1.0
354
+ ),
355
+ contours={
356
+ "z": {"show": True, "start": -2, "end": 2, "size": 0.1, "color":"white"}
357
+ }
358
+ )])
359
+
360
+ # Update layout
361
+ fig.update_layout(
362
+ title=dict(
363
+ text="Memory Wave Visualization",
364
+ font=dict(size=24, color="#333333")
365
+ ),
366
+ scene=dict(
367
+ xaxis_title="Space",
368
+ yaxis_title="Time",
369
+ zaxis_title="Amplitude",
370
+ aspectratio=dict(x=1, y=1, z=0.8),
371
+ camera=dict(
372
+ eye=dict(x=1.5, y=1.5, z=1.2)
373
+ )
374
+ ),
375
+ margin=dict(l=0, r=0, b=0, t=30),
376
+ template="plotly_white"
377
+ )
378
+
379
+ return fig
380
+
381
+ def create_2d_comparison(wave1: np.ndarray, wave2: np.ndarray,
382
+ title1: str, title2: str,
383
+ emotion: EmotionalContext) -> go.Figure:
384
+ """Create a side-by-side comparison of two wave patterns"""
385
+ # Get color palette
386
+ colors = emotion.get_color_palette()
387
+
388
+ # Create subplots
389
+ fig = make_subplots(
390
+ rows=1, cols=2,
391
+ subplot_titles=(title1, title2),
392
+ specs=[[{"type": "heatmap"}, {"type": "heatmap"}]]
393
+ )
394
+
395
+ # Add heatmaps
396
+ fig.add_trace(
397
+ go.Heatmap(
398
+ z=wave1,
399
+ colorscale=[[0, colors[0]], [1, colors[-1]]],
400
+ showscale=False
401
+ ),
402
+ row=1, col=1
403
+ )
404
+
405
+ fig.add_trace(
406
+ go.Heatmap(
407
+ z=wave2,
408
+ colorscale=[[0, colors[0]], [1, colors[-1]]],
409
+ showscale=True
410
+ ),
411
+ row=1, col=2
412
+ )
413
+
414
+ # Update layout
415
+ fig.update_layout(
416
+ title_text="Memory Pattern Comparison",
417
+ height=500,
418
+ template="plotly_white"
419
+ )
420
 
421
+ return fig
422
+
423
+ def create_artistic_visualization(prompt: str, seed: int) -> Optional[Image.Image]:
424
+ """Create artistic visualization using Stable Diffusion"""
425
+ if not STABLE_DIFFUSION_AVAILABLE or pipe is None:
426
+ return None
427
 
428
+ try:
 
 
429
  generator = torch.Generator().manual_seed(seed)
430
+ image = pipe(
431
  prompt=prompt,
432
  negative_prompt="text, watermark, signature, blurry, distorted",
433
  guidance_scale=1.5,
 
437
  generator=generator,
438
  ).images[0]
439
 
440
+ return image
441
+ except Exception as e:
442
+ print(f"Error generating artistic visualization: {e}")
443
+ return None
 
 
 
 
444
 
445
+ def create_emotional_wave_animation(size: int, emotion: EmotionalContext) -> Image.Image:
446
+ """Create an animated-like visualization of emotional waves"""
447
+ # Create a blank image
448
+ width, height = size * 10, size * 10
449
+ image = Image.new('RGBA', (width, height), (255, 255, 255, 0))
450
+ draw = ImageDraw.Draw(image)
451
+
452
+ # Get color palette
453
+ colors = emotion.get_color_palette()
454
+
455
+ # Calculate wave parameters based on emotional state
456
+ valence = emotion.valence.item()
457
+ arousal = emotion.arousal.item()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
458
 
459
+ # Normalize to 0-1 range
460
+ valence_norm = (valence + 128) / 255
461
+ arousal_norm = arousal / 255
462
 
463
+ # Create multiple wave layers
464
+ for i in range(5):
465
+ # Calculate wave parameters
466
+ amplitude = 50 + i * 20 * arousal_norm
467
+ frequency = 0.01 + i * 0.005 * (1 + valence_norm)
468
+ phase = i * math.pi / 5
469
+
470
+ # Select color
471
+ color = colors[i % len(colors)]
472
+
473
+ # Draw wave
474
+ points = []
475
+ for x in range(width):
476
+ # Calculate y position with multiple sine waves
477
+ y = height/2 + amplitude * math.sin(frequency * x + phase)
478
+ y += amplitude/2 * math.sin(frequency * 2 * x + phase)
479
+ points.append((x, y))
480
+
481
+ # Draw wave with varying thickness
482
+ for j in range(3):
483
+ thickness = 5 - j
484
+ draw.line(points, fill=color, width=thickness)
485
 
486
+ # Apply blur for smoother appearance
487
+ image = image.filter(ImageFilter.GaussianBlur(radius=3))
488
 
489
+ return image
 
490
 
491
+ def quantum_memory_ops(
492
+ input_size: int,
493
+ operation: str,
494
+ emotion_valence: float,
495
+ emotion_arousal: float = None,
496
+ wave_type: str = "sine",
497
+ hot_tub_temp: float = 37.0,
498
+ hot_tub_participants: str = "",
499
+ generate_art: bool = True,
500
+ seed: int = 42
501
+ ) -> Tuple[str, go.Figure, go.Figure, Image.Image]:
502
+ """Perform quantum-inspired memory operations using Mem|8 concepts."""
503
+ # Initialize components
504
+ device = "cuda" if torch.cuda.is_available() else "cpu"
505
+ emotion = EmotionalContext(device)
506
+ emotion.update(emotion_valence, emotion_arousal)
507
+
508
+ wave_processor = WaveProcessor(device)
509
+
510
+ # Process hot tub participants if provided
511
+ if hot_tub_participants:
512
+ participants = [p.strip() for p in hot_tub_participants.split(',')]
513
+ emotion.activate_hot_tub(hot_tub_temp)
514
+ for participant in participants:
515
+ emotion.add_hot_tub_participant(participant)
516
+
517
+ results = []
518
+ wave_viz = None
519
+ comparison_viz = None
520
+ art_viz = None
521
+
522
+ # Add header with emotional context
523
+ results.append(f"🌊 Mem|8 Wave Memory Analysis 🌊")
524
+ results.append(f"Operation: {operation}")
525
+ results.append(f"Wave Type: {wave_type}")
526
+ results.append(f"Grid Size: {input_size}x{input_size}")
527
+ results.append("")
528
+
529
+ if operation == "wave_memory":
530
+ # Create memory wave pattern (M = A·exp(iωt-kx)·D·E)
531
+ wave = wave_processor.create_wave_pattern(input_size, 2.0, 1.0, wave_type)