Spaces:
Configuration error
Configuration error
| # Copyright (c) 2024 Amphion. | |
| # | |
| # This source code is licensed under the MIT license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| from typing import Optional, Tuple | |
| import numpy as np | |
| import scipy | |
| import torch | |
| from torch import nn, view_as_real, view_as_complex | |
| from torch import nn | |
| from torch.nn.utils import weight_norm, remove_weight_norm | |
| from torchaudio.functional.functional import _hz_to_mel, _mel_to_hz | |
| def safe_log(x: torch.Tensor, clip_val: float = 1e-7) -> torch.Tensor: | |
| """ | |
| Computes the element-wise logarithm of the input tensor with clipping to avoid near-zero values. | |
| Args: | |
| x (Tensor): Input tensor. | |
| clip_val (float, optional): Minimum value to clip the input tensor. Defaults to 1e-7. | |
| Returns: | |
| Tensor: Element-wise logarithm of the input tensor with clipping applied. | |
| """ | |
| return torch.log(torch.clip(x, min=clip_val)) | |
| def symlog(x: torch.Tensor) -> torch.Tensor: | |
| return torch.sign(x) * torch.log1p(x.abs()) | |
| def symexp(x: torch.Tensor) -> torch.Tensor: | |
| return torch.sign(x) * (torch.exp(x.abs()) - 1) | |
| class STFT(nn.Module): | |
| def __init__( | |
| self, | |
| n_fft: int, | |
| hop_length: int, | |
| win_length: int, | |
| center=True, | |
| ): | |
| super().__init__() | |
| self.center = center | |
| self.n_fft = n_fft | |
| self.hop_length = hop_length | |
| self.win_length = win_length | |
| window = torch.hann_window(win_length) | |
| self.register_buffer("window", window) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| # x: (B, T * hop_length) | |
| if not self.center: | |
| pad = self.win_length - self.hop_length | |
| x = torch.nn.functional.pad(x, (pad // 2, pad // 2), mode="reflect") | |
| stft_spec = torch.stft( | |
| x, | |
| self.n_fft, | |
| hop_length=self.hop_length, | |
| win_length=self.win_length, | |
| window=self.window, | |
| center=self.center, | |
| return_complex=False, | |
| ) # (B, n_fft // 2 + 1, T, 2) | |
| rea = stft_spec[:, :, :, 0] # (B, n_fft // 2 + 1, T, 2) | |
| imag = stft_spec[:, :, :, 1] # (B, n_fft // 2 + 1, T, 2) | |
| log_mag = torch.log( | |
| torch.abs(torch.sqrt(torch.pow(rea, 2) + torch.pow(imag, 2))) + 1e-5 | |
| ) # (B, n_fft // 2 + 1, T) | |
| phase = torch.atan2(imag, rea) # (B, n_fft // 2 + 1, T) | |
| return log_mag, phase | |
| class ISTFT(nn.Module): | |
| """ | |
| Custom implementation of ISTFT since torch.istft doesn't allow custom padding (other than `center=True`) with | |
| windowing. This is because the NOLA (Nonzero Overlap Add) check fails at the edges. | |
| See issue: https://github.com/pytorch/pytorch/issues/62323 | |
| Specifically, in the context of neural vocoding we are interested in "same" padding analogous to CNNs. | |
| The NOLA constraint is met as we trim padded samples anyway. | |
| Args: | |
| n_fft (int): Size of Fourier transform. | |
| hop_length (int): The distance between neighboring sliding window frames. | |
| win_length (int): The size of window frame and STFT filter. | |
| padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
| """ | |
| def __init__( | |
| self, n_fft: int, hop_length: int, win_length: int, padding: str = "same" | |
| ): | |
| super().__init__() | |
| if padding not in ["center", "same"]: | |
| raise ValueError("Padding must be 'center' or 'same'.") | |
| self.padding = padding | |
| self.n_fft = n_fft | |
| self.hop_length = hop_length | |
| self.win_length = win_length | |
| window = torch.hann_window(win_length) | |
| self.register_buffer("window", window) | |
| def forward(self, spec: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Compute the Inverse Short Time Fourier Transform (ISTFT) of a complex spectrogram. | |
| Args: | |
| spec (Tensor): Input complex spectrogram of shape (B, N, T), where B is the batch size, | |
| N is the number of frequency bins, and T is the number of time frames. | |
| Returns: | |
| Tensor: Reconstructed time-domain signal of shape (B, L), where L is the length of the output signal. | |
| """ | |
| if self.padding == "center": | |
| # Fallback to pytorch native implementation | |
| return torch.istft( | |
| spec, | |
| self.n_fft, | |
| self.hop_length, | |
| self.win_length, | |
| self.window, | |
| center=True, | |
| ) | |
| elif self.padding == "same": | |
| pad = (self.win_length - self.hop_length) // 2 | |
| else: | |
| raise ValueError("Padding must be 'center' or 'same'.") | |
| assert spec.dim() == 3, "Expected a 3D tensor as input" | |
| B, N, T = spec.shape | |
| # Inverse FFT | |
| ifft = torch.fft.irfft(spec, self.n_fft, dim=1, norm="backward") | |
| ifft = ifft * self.window[None, :, None] | |
| # Overlap and Add | |
| output_size = (T - 1) * self.hop_length + self.win_length | |
| y = torch.nn.functional.fold( | |
| ifft, | |
| output_size=(1, output_size), | |
| kernel_size=(1, self.win_length), | |
| stride=(1, self.hop_length), | |
| )[:, 0, 0, pad:-pad] | |
| # Window envelope | |
| window_sq = self.window.square().expand(1, T, -1).transpose(1, 2) | |
| window_envelope = torch.nn.functional.fold( | |
| window_sq, | |
| output_size=(1, output_size), | |
| kernel_size=(1, self.win_length), | |
| stride=(1, self.hop_length), | |
| ).squeeze()[pad:-pad] | |
| # Normalize | |
| assert (window_envelope > 1e-11).all() | |
| y = y / window_envelope | |
| return y | |
| class MDCT(nn.Module): | |
| """ | |
| Modified Discrete Cosine Transform (MDCT) module. | |
| Args: | |
| frame_len (int): Length of the MDCT frame. | |
| padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
| """ | |
| def __init__(self, frame_len: int, padding: str = "same"): | |
| super().__init__() | |
| if padding not in ["center", "same"]: | |
| raise ValueError("Padding must be 'center' or 'same'.") | |
| self.padding = padding | |
| self.frame_len = frame_len | |
| N = frame_len // 2 | |
| n0 = (N + 1) / 2 | |
| window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() | |
| self.register_buffer("window", window) | |
| pre_twiddle = torch.exp(-1j * torch.pi * torch.arange(frame_len) / frame_len) | |
| post_twiddle = torch.exp(-1j * torch.pi * n0 * (torch.arange(N) + 0.5) / N) | |
| # view_as_real: NCCL Backend does not support ComplexFloat data type | |
| # https://github.com/pytorch/pytorch/issues/71613 | |
| self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) | |
| self.register_buffer("post_twiddle", view_as_real(post_twiddle)) | |
| def forward(self, audio: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Apply the Modified Discrete Cosine Transform (MDCT) to the input audio. | |
| Args: | |
| audio (Tensor): Input audio waveform of shape (B, T), where B is the batch size | |
| and T is the length of the audio. | |
| Returns: | |
| Tensor: MDCT coefficients of shape (B, L, N), where L is the number of output frames | |
| and N is the number of frequency bins. | |
| """ | |
| if self.padding == "center": | |
| audio = torch.nn.functional.pad( | |
| audio, (self.frame_len // 2, self.frame_len // 2) | |
| ) | |
| elif self.padding == "same": | |
| # hop_length is 1/2 frame_len | |
| audio = torch.nn.functional.pad( | |
| audio, (self.frame_len // 4, self.frame_len // 4) | |
| ) | |
| else: | |
| raise ValueError("Padding must be 'center' or 'same'.") | |
| x = audio.unfold(-1, self.frame_len, self.frame_len // 2) | |
| N = self.frame_len // 2 | |
| x = x * self.window.expand(x.shape) | |
| X = torch.fft.fft( | |
| x * view_as_complex(self.pre_twiddle).expand(x.shape), dim=-1 | |
| )[..., :N] | |
| res = X * view_as_complex(self.post_twiddle).expand(X.shape) * np.sqrt(1 / N) | |
| return torch.real(res) * np.sqrt(2) | |
| class IMDCT(nn.Module): | |
| """ | |
| Inverse Modified Discrete Cosine Transform (IMDCT) module. | |
| Args: | |
| frame_len (int): Length of the MDCT frame. | |
| padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
| """ | |
| def __init__(self, frame_len: int, padding: str = "same"): | |
| super().__init__() | |
| if padding not in ["center", "same"]: | |
| raise ValueError("Padding must be 'center' or 'same'.") | |
| self.padding = padding | |
| self.frame_len = frame_len | |
| N = frame_len // 2 | |
| n0 = (N + 1) / 2 | |
| window = torch.from_numpy(scipy.signal.cosine(frame_len)).float() | |
| self.register_buffer("window", window) | |
| pre_twiddle = torch.exp(1j * torch.pi * n0 * torch.arange(N * 2) / N) | |
| post_twiddle = torch.exp(1j * torch.pi * (torch.arange(N * 2) + n0) / (N * 2)) | |
| self.register_buffer("pre_twiddle", view_as_real(pre_twiddle)) | |
| self.register_buffer("post_twiddle", view_as_real(post_twiddle)) | |
| def forward(self, X: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Apply the Inverse Modified Discrete Cosine Transform (IMDCT) to the input MDCT coefficients. | |
| Args: | |
| X (Tensor): Input MDCT coefficients of shape (B, L, N), where B is the batch size, | |
| L is the number of frames, and N is the number of frequency bins. | |
| Returns: | |
| Tensor: Reconstructed audio waveform of shape (B, T), where T is the length of the audio. | |
| """ | |
| B, L, N = X.shape | |
| Y = torch.zeros((B, L, N * 2), dtype=X.dtype, device=X.device) | |
| Y[..., :N] = X | |
| Y[..., N:] = -1 * torch.conj(torch.flip(X, dims=(-1,))) | |
| y = torch.fft.ifft( | |
| Y * view_as_complex(self.pre_twiddle).expand(Y.shape), dim=-1 | |
| ) | |
| y = ( | |
| torch.real(y * view_as_complex(self.post_twiddle).expand(y.shape)) | |
| * np.sqrt(N) | |
| * np.sqrt(2) | |
| ) | |
| result = y * self.window.expand(y.shape) | |
| output_size = (1, (L + 1) * N) | |
| audio = torch.nn.functional.fold( | |
| result.transpose(1, 2), | |
| output_size=output_size, | |
| kernel_size=(1, self.frame_len), | |
| stride=(1, self.frame_len // 2), | |
| )[:, 0, 0, :] | |
| if self.padding == "center": | |
| pad = self.frame_len // 2 | |
| elif self.padding == "same": | |
| pad = self.frame_len // 4 | |
| else: | |
| raise ValueError("Padding must be 'center' or 'same'.") | |
| audio = audio[:, pad:-pad] | |
| return audio | |
| class FourierHead(nn.Module): | |
| """Base class for inverse fourier modules.""" | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Args: | |
| x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
| L is the sequence length, and H denotes the model dimension. | |
| Returns: | |
| Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
| """ | |
| raise NotImplementedError("Subclasses must implement the forward method.") | |
| class ISTFTHead(FourierHead): | |
| """ | |
| ISTFT Head module for predicting STFT complex coefficients. | |
| Args: | |
| dim (int): Hidden dimension of the model. | |
| n_fft (int): Size of Fourier transform. | |
| hop_length (int): The distance between neighboring sliding window frames, which should align with | |
| the resolution of the input features. | |
| padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
| """ | |
| def __init__(self, dim: int, n_fft: int, hop_length: int, padding: str = "same"): | |
| super().__init__() | |
| out_dim = n_fft + 2 | |
| self.out = torch.nn.Linear(dim, out_dim) | |
| self.istft = ISTFT( | |
| n_fft=n_fft, hop_length=hop_length, win_length=n_fft, padding=padding | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Forward pass of the ISTFTHead module. | |
| Args: | |
| x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
| L is the sequence length, and H denotes the model dimension. | |
| Returns: | |
| Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
| """ | |
| x = self.out(x).transpose(1, 2) | |
| mag, p = x.chunk(2, dim=1) | |
| mag = torch.exp(mag) | |
| mag = torch.clip( | |
| mag, max=1e2 | |
| ) # safeguard to prevent excessively large magnitudes | |
| # wrapping happens here. These two lines produce real and imaginary value | |
| x = torch.cos(p) | |
| y = torch.sin(p) | |
| # recalculating phase here does not produce anything new | |
| # only costs time | |
| # phase = torch.atan2(y, x) | |
| # S = mag * torch.exp(phase * 1j) | |
| # better directly produce the complex value | |
| S = mag * (x + 1j * y) | |
| audio = self.istft(S) | |
| return audio | |
| class IMDCTSymExpHead(FourierHead): | |
| """ | |
| IMDCT Head module for predicting MDCT coefficients with symmetric exponential function | |
| Args: | |
| dim (int): Hidden dimension of the model. | |
| mdct_frame_len (int): Length of the MDCT frame. | |
| padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
| sample_rate (int, optional): The sample rate of the audio. If provided, the last layer will be initialized | |
| based on perceptual scaling. Defaults to None. | |
| clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| mdct_frame_len: int, | |
| padding: str = "same", | |
| sample_rate: Optional[int] = None, | |
| clip_audio: bool = False, | |
| ): | |
| super().__init__() | |
| out_dim = mdct_frame_len // 2 | |
| self.out = nn.Linear(dim, out_dim) | |
| self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding) | |
| self.clip_audio = clip_audio | |
| if sample_rate is not None: | |
| # optionally init the last layer following mel-scale | |
| m_max = _hz_to_mel(sample_rate // 2) | |
| m_pts = torch.linspace(0, m_max, out_dim) | |
| f_pts = _mel_to_hz(m_pts) | |
| scale = 1 - (f_pts / f_pts.max()) | |
| with torch.no_grad(): | |
| self.out.weight.mul_(scale.view(-1, 1)) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Forward pass of the IMDCTSymExpHead module. | |
| Args: | |
| x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
| L is the sequence length, and H denotes the model dimension. | |
| Returns: | |
| Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
| """ | |
| x = self.out(x) | |
| x = symexp(x) | |
| x = torch.clip( | |
| x, min=-1e2, max=1e2 | |
| ) # safeguard to prevent excessively large magnitudes | |
| audio = self.imdct(x) | |
| if self.clip_audio: | |
| audio = torch.clip(x, min=-1.0, max=1.0) | |
| return audio | |
| class IMDCTCosHead(FourierHead): | |
| """ | |
| IMDCT Head module for predicting MDCT coefficients with parametrizing MDCT = exp(m) · cos(p) | |
| Args: | |
| dim (int): Hidden dimension of the model. | |
| mdct_frame_len (int): Length of the MDCT frame. | |
| padding (str, optional): Type of padding. Options are "center" or "same". Defaults to "same". | |
| clip_audio (bool, optional): Whether to clip the audio output within the range of [-1.0, 1.0]. Defaults to False. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| mdct_frame_len: int, | |
| padding: str = "same", | |
| clip_audio: bool = False, | |
| ): | |
| super().__init__() | |
| self.clip_audio = clip_audio | |
| self.out = nn.Linear(dim, mdct_frame_len) | |
| self.imdct = IMDCT(frame_len=mdct_frame_len, padding=padding) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Forward pass of the IMDCTCosHead module. | |
| Args: | |
| x (Tensor): Input tensor of shape (B, L, H), where B is the batch size, | |
| L is the sequence length, and H denotes the model dimension. | |
| Returns: | |
| Tensor: Reconstructed time-domain audio signal of shape (B, T), where T is the length of the output signal. | |
| """ | |
| x = self.out(x) | |
| m, p = x.chunk(2, dim=2) | |
| m = torch.exp(m).clip( | |
| max=1e2 | |
| ) # safeguard to prevent excessively large magnitudes | |
| audio = self.imdct(m * torch.cos(p)) | |
| if self.clip_audio: | |
| audio = torch.clip(x, min=-1.0, max=1.0) | |
| return audio | |
| class ConvNeXtBlock(nn.Module): | |
| """ConvNeXt Block adapted from https://github.com/facebookresearch/ConvNeXt to 1D audio signal. | |
| Args: | |
| dim (int): Number of input channels. | |
| intermediate_dim (int): Dimensionality of the intermediate layer. | |
| layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
| Defaults to None. | |
| adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
| None means non-conditional LayerNorm. Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| intermediate_dim: int, | |
| layer_scale_init_value: float, | |
| adanorm_num_embeddings: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.dwconv = nn.Conv1d( | |
| dim, dim, kernel_size=7, padding=3, groups=dim | |
| ) # depthwise conv | |
| self.adanorm = adanorm_num_embeddings is not None | |
| if adanorm_num_embeddings: | |
| self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) | |
| else: | |
| self.norm = nn.LayerNorm(dim, eps=1e-6) | |
| self.pwconv1 = nn.Linear( | |
| dim, intermediate_dim | |
| ) # pointwise/1x1 convs, implemented with linear layers | |
| self.act = nn.GELU() | |
| self.pwconv2 = nn.Linear(intermediate_dim, dim) | |
| self.gamma = ( | |
| nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) | |
| if layer_scale_init_value > 0 | |
| else None | |
| ) | |
| def forward( | |
| self, x: torch.Tensor, cond_embedding_id: Optional[torch.Tensor] = None | |
| ) -> torch.Tensor: | |
| residual = x | |
| x = self.dwconv(x) | |
| x = x.transpose(1, 2) # (B, C, T) -> (B, T, C) | |
| if self.adanorm: | |
| assert cond_embedding_id is not None | |
| x = self.norm(x, cond_embedding_id) | |
| else: | |
| x = self.norm(x) | |
| x = self.pwconv1(x) | |
| x = self.act(x) | |
| x = self.pwconv2(x) | |
| if self.gamma is not None: | |
| x = self.gamma * x | |
| x = x.transpose(1, 2) # (B, T, C) -> (B, C, T) | |
| x = residual + x | |
| return x | |
| class AdaLayerNorm(nn.Module): | |
| """ | |
| Adaptive Layer Normalization module with learnable embeddings per `num_embeddings` classes | |
| Args: | |
| num_embeddings (int): Number of embeddings. | |
| embedding_dim (int): Dimension of the embeddings. | |
| """ | |
| def __init__(self, num_embeddings: int, embedding_dim: int, eps: float = 1e-6): | |
| super().__init__() | |
| self.eps = eps | |
| self.dim = embedding_dim | |
| self.scale = nn.Embedding( | |
| num_embeddings=num_embeddings, embedding_dim=embedding_dim | |
| ) | |
| self.shift = nn.Embedding( | |
| num_embeddings=num_embeddings, embedding_dim=embedding_dim | |
| ) | |
| torch.nn.init.ones_(self.scale.weight) | |
| torch.nn.init.zeros_(self.shift.weight) | |
| def forward(self, x: torch.Tensor, cond_embedding_id: torch.Tensor) -> torch.Tensor: | |
| scale = self.scale(cond_embedding_id) | |
| shift = self.shift(cond_embedding_id) | |
| x = nn.functional.layer_norm(x, (self.dim,), eps=self.eps) | |
| x = x * scale + shift | |
| return x | |
| class ResBlock1(nn.Module): | |
| """ | |
| ResBlock adapted from HiFi-GAN V1 (https://github.com/jik876/hifi-gan) with dilated 1D convolutions, | |
| but without upsampling layers. | |
| Args: | |
| dim (int): Number of input channels. | |
| kernel_size (int, optional): Size of the convolutional kernel. Defaults to 3. | |
| dilation (tuple[int], optional): Dilation factors for the dilated convolutions. | |
| Defaults to (1, 3, 5). | |
| lrelu_slope (float, optional): Negative slope of the LeakyReLU activation function. | |
| Defaults to 0.1. | |
| layer_scale_init_value (float, optional): Initial value for the layer scale. None means no scaling. | |
| Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| dim: int, | |
| kernel_size: int = 3, | |
| dilation: Tuple[int, int, int] = (1, 3, 5), | |
| lrelu_slope: float = 0.1, | |
| layer_scale_init_value: Optional[float] = None, | |
| ): | |
| super().__init__() | |
| self.lrelu_slope = lrelu_slope | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=self.get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=self.get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=self.get_padding(kernel_size, dilation[2]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=self.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=self.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| nn.Conv1d( | |
| dim, | |
| dim, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=self.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.gamma = nn.ParameterList( | |
| [ | |
| ( | |
| nn.Parameter( | |
| layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
| ) | |
| if layer_scale_init_value is not None | |
| else None | |
| ), | |
| ( | |
| nn.Parameter( | |
| layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
| ) | |
| if layer_scale_init_value is not None | |
| else None | |
| ), | |
| ( | |
| nn.Parameter( | |
| layer_scale_init_value * torch.ones(dim, 1), requires_grad=True | |
| ) | |
| if layer_scale_init_value is not None | |
| else None | |
| ), | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| for c1, c2, gamma in zip(self.convs1, self.convs2, self.gamma): | |
| xt = torch.nn.functional.leaky_relu(x, negative_slope=self.lrelu_slope) | |
| xt = c1(xt) | |
| xt = torch.nn.functional.leaky_relu(xt, negative_slope=self.lrelu_slope) | |
| xt = c2(xt) | |
| if gamma is not None: | |
| xt = gamma * xt | |
| x = xt + x | |
| return x | |
| def remove_weight_norm(self): | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| def get_padding(kernel_size: int, dilation: int = 1) -> int: | |
| return int((kernel_size * dilation - dilation) / 2) | |
| class Backbone(nn.Module): | |
| """Base class for the generator's backbone. It preserves the same temporal resolution across all layers.""" | |
| def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
| """ | |
| Args: | |
| x (Tensor): Input tensor of shape (B, C, L), where B is the batch size, | |
| C denotes output features, and L is the sequence length. | |
| Returns: | |
| Tensor: Output of shape (B, L, H), where B is the batch size, L is the sequence length, | |
| and H denotes the model dimension. | |
| """ | |
| raise NotImplementedError("Subclasses must implement the forward method.") | |
| class VocosBackbone(Backbone): | |
| """ | |
| Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization | |
| Args: | |
| input_channels (int): Number of input features channels. | |
| dim (int): Hidden dimension of the model. | |
| intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. | |
| num_layers (int): Number of ConvNeXtBlock layers. | |
| layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. | |
| adanorm_num_embeddings (int, optional): Number of embeddings for AdaLayerNorm. | |
| None means non-conditional model. Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| input_channels: int, | |
| dim: int, | |
| intermediate_dim: int, | |
| num_layers: int, | |
| layer_scale_init_value: Optional[float] = None, | |
| adanorm_num_embeddings: Optional[int] = None, | |
| ): | |
| super().__init__() | |
| self.input_channels = input_channels | |
| self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) | |
| self.adanorm = adanorm_num_embeddings is not None | |
| if adanorm_num_embeddings: | |
| self.norm = AdaLayerNorm(adanorm_num_embeddings, dim, eps=1e-6) | |
| else: | |
| self.norm = nn.LayerNorm(dim, eps=1e-6) | |
| layer_scale_init_value = layer_scale_init_value or 1 / num_layers | |
| self.convnext = nn.ModuleList( | |
| [ | |
| ConvNeXtBlock( | |
| dim=dim, | |
| intermediate_dim=intermediate_dim, | |
| layer_scale_init_value=layer_scale_init_value, | |
| adanorm_num_embeddings=adanorm_num_embeddings, | |
| ) | |
| for _ in range(num_layers) | |
| ] | |
| ) | |
| self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) | |
| self.apply(self._init_weights) | |
| def _init_weights(self, m): | |
| if isinstance(m, (nn.Conv1d, nn.Linear)): | |
| nn.init.trunc_normal_(m.weight, std=0.02) | |
| nn.init.constant_(m.bias, 0) | |
| def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
| bandwidth_id = kwargs.get("bandwidth_id", None) | |
| x = self.embed(x) | |
| if self.adanorm: | |
| assert bandwidth_id is not None | |
| x = self.norm(x.transpose(1, 2), cond_embedding_id=bandwidth_id) | |
| else: | |
| x = self.norm(x.transpose(1, 2)) | |
| x = x.transpose(1, 2) | |
| for conv_block in self.convnext: | |
| x = conv_block(x, cond_embedding_id=bandwidth_id) | |
| x = self.final_layer_norm(x.transpose(1, 2)) | |
| return x | |
| class VocosResNetBackbone(Backbone): | |
| """ | |
| Vocos backbone module built with ResBlocks. | |
| Args: | |
| input_channels (int): Number of input features channels. | |
| dim (int): Hidden dimension of the model. | |
| num_blocks (int): Number of ResBlock1 blocks. | |
| layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to None. | |
| """ | |
| def __init__( | |
| self, | |
| input_channels, | |
| dim, | |
| num_blocks, | |
| layer_scale_init_value=None, | |
| ): | |
| super().__init__() | |
| self.input_channels = input_channels | |
| self.embed = weight_norm( | |
| nn.Conv1d(input_channels, dim, kernel_size=3, padding=1) | |
| ) | |
| layer_scale_init_value = layer_scale_init_value or 1 / num_blocks / 3 | |
| self.resnet = nn.Sequential( | |
| *[ | |
| ResBlock1(dim=dim, layer_scale_init_value=layer_scale_init_value) | |
| for _ in range(num_blocks) | |
| ] | |
| ) | |
| def forward(self, x: torch.Tensor, **kwargs) -> torch.Tensor: | |
| x = self.embed(x) | |
| x = self.resnet(x) | |
| x = x.transpose(1, 2) | |
| return x | |
| class Vocos(nn.Module): | |
| def __init__( | |
| self, | |
| input_channels: int = 256, | |
| dim: int = 384, | |
| intermediate_dim: int = 1152, | |
| num_layers: int = 8, | |
| adanorm_num_embeddings: int = 4, | |
| n_fft: int = 800, | |
| hop_size: int = 200, | |
| padding: str = "same", | |
| ): | |
| super().__init__() | |
| self.backbone = VocosBackbone( | |
| input_channels=input_channels, | |
| dim=dim, | |
| intermediate_dim=intermediate_dim, | |
| num_layers=num_layers, | |
| adanorm_num_embeddings=adanorm_num_embeddings, | |
| ) | |
| self.head = ISTFTHead(dim, n_fft, hop_size, padding) | |
| def forward(self, x): | |
| x = self.backbone(x) | |
| x = self.head(x) | |
| return x[:, None, :] | |