gradio==3.40
Pillow
piexif
transformers
torch
torchvision
ffmpeg-python
face_recognition
numpy
app.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
import os
|
3 |
+
import io
|
4 |
+
import subprocess
|
5 |
+
from pathlib import Path
|
6 |
+
from datetime import datetime
|
7 |
+
import gradio as gr
|
8 |
+
from PIL import Image
|
9 |
+
import piexif
|
10 |
+
import tempfile
|
11 |
+
import base64
|
12 |
+
import requests
|
13 |
+
|
14 |
+
# For AI detection: example using a HF model via transformers
|
15 |
+
import torch
|
16 |
+
from torchvision import transforms
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
# ---- CONFIG ----
|
20 |
+
# If you want to call TinEye/Bing APIs, put keys here or use Spaces secrets.
|
21 |
+
TINEYE_API_KEY = os.environ.get("TINEYE_API_KEY","")
|
22 |
+
BING_API_KEY = os.environ.get("BING_API_KEY","")
|
23 |
+
|
24 |
+
HF_AI_MODEL = "Dafilab/ai-image-detector" # مثال؛ يمكن تغييره أو استخدام SuSy
|
25 |
+
IMG_SIZE = 380
|
26 |
+
|
27 |
+
# ---- helper utilities ----
|
28 |
+
def save_bytes_to_file(b, path):
|
29 |
+
with open(path, "wb") as f:
|
30 |
+
f.write(b)
|
31 |
+
|
32 |
+
def extract_exif(image_bytes):
|
33 |
+
try:
|
34 |
+
exif_dict = piexif.load(image_bytes)
|
35 |
+
# Convert to readable pairs where possible
|
36 |
+
res = {}
|
37 |
+
for ifd in exif_dict:
|
38 |
+
if not exif_dict[ifd]:
|
39 |
+
continue
|
40 |
+
res[ifd] = {}
|
41 |
+
for tag, val in exif_dict[ifd].items():
|
42 |
+
name = piexif.TAGS[ifd].get(tag, {"name": str(tag)})["name"]
|
43 |
+
res[ifd][name] = val
|
44 |
+
return res
|
45 |
+
except Exception as e:
|
46 |
+
return {"error": str(e)}
|
47 |
+
|
48 |
+
# ---- AI detector loader (simple) ----
|
49 |
+
def load_ai_model():
|
50 |
+
try:
|
51 |
+
from transformers import ViTImageProcessor, ViTForImageClassification
|
52 |
+
processor = ViTImageProcessor.from_pretrained(HF_AI_MODEL)
|
53 |
+
model = ViTForImageClassification.from_pretrained(HF_AI_MODEL)
|
54 |
+
model.eval()
|
55 |
+
return processor, model
|
56 |
+
except Exception as e:
|
57 |
+
print("Could not load HF model:", e)
|
58 |
+
return None, None
|
59 |
+
|
60 |
+
processor, hf_model = load_ai_model()
|
61 |
+
|
62 |
+
def detect_ai_image(pil_image):
|
63 |
+
if processor is None or hf_model is None:
|
64 |
+
return {"status":"model_not_loaded"}
|
65 |
+
inputs = processor(images=pil_image, return_tensors="pt")
|
66 |
+
with torch.no_grad():
|
67 |
+
outputs = hf_model(**inputs)
|
68 |
+
probs = torch.nn.functional.softmax(outputs.logits, dim=1)[0].tolist()
|
69 |
+
# label mapping may vary by model
|
70 |
+
labels = hf_model.config.id2label if hasattr(hf_model.config, "id2label") else {0:"REAL",1:"FAKE"}
|
71 |
+
top_idx = max(range(len(probs)), key=lambda i:probs[i])
|
72 |
+
return {"label": labels.get(top_idx, str(top_idx)), "confidence": float(probs[top_idx])}
|
73 |
+
|
74 |
+
# ---- video keyframes (requires ffmpeg available) ----
|
75 |
+
def extract_keyframes_from_video(video_path, max_frames=5):
|
76 |
+
out_dir = tempfile.mkdtemp()
|
77 |
+
# extract at most `max_frames` evenly spaced frames
|
78 |
+
# first count duration via ffprobe
|
79 |
+
try:
|
80 |
+
cmd = [
|
81 |
+
"ffprobe", "-v", "error", "-select_streams", "v:0",
|
82 |
+
"-show_entries", "format=duration", "-of", "default=noprint_wrappers=1:nokey=1",
|
83 |
+
video_path
|
84 |
+
]
|
85 |
+
proc = subprocess.run(cmd, capture_output=True, text=True, timeout=10)
|
86 |
+
duration = float(proc.stdout.strip() or 0.0)
|
87 |
+
except Exception:
|
88 |
+
duration = 0
|
89 |
+
frames = []
|
90 |
+
if duration <= 0:
|
91 |
+
# fallback: extract first few frames
|
92 |
+
timestamps = [0, 1, 2, 3, 4][:max_frames]
|
93 |
+
else:
|
94 |
+
step = max(1, duration / max_frames)
|
95 |
+
timestamps = [i*step for i in range(max_frames)]
|
96 |
+
for i, t in enumerate(timestamps):
|
97 |
+
out_path = os.path.join(out_dir, f"frame_{i}.jpg")
|
98 |
+
cmd = ["ffmpeg", "-ss", str(t), "-i", video_path, "-frames:v", "1", "-q:v", "2", out_path, "-y"]
|
99 |
+
try:
|
100 |
+
subprocess.run(cmd, capture_output=True, timeout=15)
|
101 |
+
if os.path.exists(out_path):
|
102 |
+
frames.append(out_path)
|
103 |
+
except Exception:
|
104 |
+
continue
|
105 |
+
return frames
|
106 |
+
|
107 |
+
# ---- reverse search links generator ----
|
108 |
+
def build_reverse_search_links_for_file(file_url=None, local_file_path=None):
|
109 |
+
"""
|
110 |
+
If file_url is provided (public URL), build direct links that open reverse image search with that URL.
|
111 |
+
If not, we will upload file temporarily to imgur anonymous (optional) or provide download blob.
|
112 |
+
Here we will prefer to return search-by-upload pages.
|
113 |
+
"""
|
114 |
+
links = {}
|
115 |
+
if file_url:
|
116 |
+
# Google (open image search by URL), Yandex, TinEye, Bing
|
117 |
+
links['Google'] = f"https://www.google.com/searchbyimage?image_url={file_url}"
|
118 |
+
links['Yandex'] = f"https://yandex.com/images/search?rpt=imageview&url={file_url}"
|
119 |
+
links['TinEye'] = f"https://tineye.com/search?url={file_url}"
|
120 |
+
links['Bing'] = f"https://www.bing.com/images/search?q=imgurl:{file_url}&view=detailv2"
|
121 |
+
else:
|
122 |
+
# provide pages where user can upload the file manually
|
123 |
+
links['Google_upload'] = "https://images.google.com/ (use camera icon → upload image)"
|
124 |
+
links['TinEye_upload'] = "https://tineye.com/ (upload image)"
|
125 |
+
links['Yandex_upload'] = "https://yandex.com/images/ (upload image)"
|
126 |
+
links['Bing_upload'] = "https://www.bing.com/images (click camera)"
|
127 |
+
return links
|
128 |
+
|
129 |
+
# ---- face detection (simple cropping) ----
|
130 |
+
def detect_and_crop_faces(pil_image):
|
131 |
+
try:
|
132 |
+
import face_recognition
|
133 |
+
except Exception as e:
|
134 |
+
return {"error":"face_recognition_not_installed_or_failed"}
|
135 |
+
img = pil_image.convert("RGB")
|
136 |
+
arr = face_recognition.api.load_image_file(io.BytesIO())
|
137 |
+
# face_recognition expects a path or numpy array; workaround: convert
|
138 |
+
np_img = face_recognition.api.load_image_file(io.BytesIO(img.tobytes())) if False else None
|
139 |
+
# Simpler: use face_recognition.face_locations on PIL via numpy
|
140 |
+
import numpy as np
|
141 |
+
np_img = np.array(img)
|
142 |
+
locs = face_recognition.face_locations(np_img)
|
143 |
+
faces = []
|
144 |
+
for i, (top,right,bottom,left) in enumerate(locs):
|
145 |
+
crop = img.crop((left, top, right, bottom))
|
146 |
+
b = io.BytesIO()
|
147 |
+
crop.save(b, format="JPEG")
|
148 |
+
faces.append({'index':i, 'image_bytes': b.getvalue()})
|
149 |
+
return faces
|
150 |
+
|
151 |
+
# ---- main Gradio function ----
|
152 |
+
def process_upload(file):
|
153 |
+
# file: UploadedFile object from Gradio
|
154 |
+
fname = file.name
|
155 |
+
b = file.read()
|
156 |
+
out = {"filename": fname}
|
157 |
+
# if image
|
158 |
+
try:
|
159 |
+
pil = Image.open(io.BytesIO(b))
|
160 |
+
out['type'] = "image"
|
161 |
+
# EXIF
|
162 |
+
try:
|
163 |
+
exif = extract_exif(b)
|
164 |
+
out['exif'] = exif
|
165 |
+
except Exception as e:
|
166 |
+
out['exif'] = {"error": str(e)}
|
167 |
+
# AI detection
|
168 |
+
try:
|
169 |
+
ai_res = detect_ai_image(pil)
|
170 |
+
out['ai_detection'] = ai_res
|
171 |
+
except Exception as e:
|
172 |
+
out['ai_detection'] = {"error":str(e)}
|
173 |
+
# provide reverse-search links (no public URL available)
|
174 |
+
out['reverse_links'] = build_reverse_search_links_for_file()
|
175 |
+
# prepare preview
|
176 |
+
buf = io.BytesIO()
|
177 |
+
pil.thumbnail((800,800))
|
178 |
+
pil.save(buf, format="JPEG")
|
179 |
+
preview_b64 = base64.b64encode(buf.getvalue()).decode()
|
180 |
+
out['preview_base64'] = preview_b64
|
181 |
+
return out
|
182 |
+
except Exception:
|
183 |
+
# assume video
|
184 |
+
tv = tempfile.NamedTemporaryFile(delete=False, suffix=os.path.splitext(fname)[1])
|
185 |
+
tv.write(b)
|
186 |
+
tv.flush()
|
187 |
+
frames = extract_keyframes_from_video(tv.name, max_frames=5)
|
188 |
+
out['type'] = "video"
|
189 |
+
out['keyframes'] = []
|
190 |
+
for path in frames:
|
191 |
+
with open(path,"rb") as f:
|
192 |
+
out['keyframes'].append(base64.b64encode(f.read()).decode())
|
193 |
+
out['reverse_links'] = build_reverse_search_links_for_file()
|
194 |
+
return out
|
195 |
+
|
196 |
+
# ---- Gradio UI ----
|
197 |
+
css = """
|
198 |
+
.gradio-container { max-width: 1100px; margin: auto; }
|
199 |
+
"""
|
200 |
+
|
201 |
+
with gr.Blocks(css=css) as demo:
|
202 |
+
gr.Markdown("## أداة تحقق صور/فيديو مبسطة (صحفيين)\n- ارفع صورة أو فيديو\n- سيعرض EXIF، كشف إذا كانت الصورة مولدة بالـAI (موديل HF إن تم تحميله)، ويفصل keyframes من الفيديو\n- يقدّم روابط سريعة للبحث العكسي (افتحها لتفقد أول ظهور على الويب)\n")
|
203 |
+
with gr.Row():
|
204 |
+
inp = gr.File(label="رفع صورة أو فيديو (JPEG/PNG/MP4...)")
|
205 |
+
btn = gr.Button("تحقق")
|
206 |
+
out_json = gr.JSON(label="نتيجة الفحص (JSON)")
|
207 |
+
preview = gr.Image(label="معاينة / keyframes", interactive=False)
|
208 |
+
btn.click(process_upload, inputs=inp, outputs=out_json)
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
demo.launch()
|