Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load summarizer
|
6 |
+
device = 0 if torch.cuda.is_available() else -1
|
7 |
+
summarizer = pipeline(
|
8 |
+
"summarization",
|
9 |
+
model="csebuetnlp/mT5_multilingual_XLSum",
|
10 |
+
tokenizer="csebuetnlp/mT5_multilingual_XLSum",
|
11 |
+
device=device
|
12 |
+
)
|
13 |
+
|
14 |
+
print("✅ Model loaded on:", "GPU" if device == 0 else "CPU")
|
15 |
+
|
16 |
+
# Function for API and UI
|
17 |
+
def summarize_text(text):
|
18 |
+
if not text.strip():
|
19 |
+
return "❌ Error: No text provided."
|
20 |
+
|
21 |
+
max_len = 1000
|
22 |
+
clean_text = text.strip()[:max_len]
|
23 |
+
result = summarizer([clean_text], max_length=130, min_length=30, do_sample=False)
|
24 |
+
return result[0]["summary_text"]
|
25 |
+
|
26 |
+
# Gradio Interface (UI + API)
|
27 |
+
iface = gr.Interface(
|
28 |
+
fn=summarize_text,
|
29 |
+
inputs=gr.Textbox(lines=10, placeholder="Paste your news article here..."),
|
30 |
+
outputs="text",
|
31 |
+
title="Multilingual News Summarizer",
|
32 |
+
description="Summarizes news articles using mT5 multilingual XLSum model."
|
33 |
+
)
|
34 |
+
|
35 |
+
iface.launch()
|