Spaces:
Sleeping
Sleeping
mj-new
commited on
Commit
·
32c749f
1
Parent(s):
60f84a1
updated leaderboard - added poleval test sets
Browse files- app.py +296 -5
- constants.py +2 -0
app.py
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
import pandas as pd
|
| 4 |
-
from constants import BIGOS_INFO, PELCRA_INFO, ANALYSIS_INFO, ABOUT_INFO, INSPECTION_INFO, COMPARISON_INFO
|
| 5 |
from utils import read_latest_results, basic_stats_per_dimension, retrieve_asr_systems_meta_from_the_catalog, box_plot_per_dimension,box_plot_per_dimension_subsets, box_plot_per_dimension_with_colors, get_total_audio_duration, check_impact_of_normalization, calculate_wer_per_meta_category, calculate_wer_per_audio_feature
|
| 6 |
from app_utils import calculate_height_to_display, filter_dataframe
|
| 7 |
import matplotlib.pyplot as plt
|
|
@@ -22,7 +22,9 @@ if hf_token is None:
|
|
| 22 |
# select the dataset to display results
|
| 23 |
datasets_secret = [
|
| 24 |
"amu-cai/pl-asr-bigos-v2-secret",
|
| 25 |
-
"pelcra/pl-asr-pelcra-for-bigos-secret"
|
|
|
|
|
|
|
| 26 |
|
| 27 |
datasets_public = []
|
| 28 |
#["amu-cai/pl-asr-bigos-synth-med"]
|
|
@@ -30,7 +32,7 @@ datasets_public = []
|
|
| 30 |
|
| 31 |
st.set_page_config(layout="wide")
|
| 32 |
|
| 33 |
-
about, lead_bigos, lead_pelcra, analysis, interactive_comparison = st.tabs(["About", "
|
| 34 |
# "Results inspection""Results inspection"
|
| 35 |
# inspection
|
| 36 |
# acknowledgements, changelog, faq, todos = st.columns(4)
|
|
@@ -366,7 +368,7 @@ with lead_bigos:
|
|
| 366 |
if metric == 'Average':
|
| 367 |
ax.set_title('Average normalization impact on all metrics')
|
| 368 |
ax.set_xlabel('Normalization Type')
|
| 369 |
-
ax.set_ylabel(f'Difference in {metric}')
|
| 370 |
ax.grid(True)
|
| 371 |
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
|
| 372 |
min_val = diff_in_metrics[metric].min()
|
|
@@ -500,7 +502,292 @@ with lead_pelcra:
|
|
| 500 |
if metric == 'Average':
|
| 501 |
ax.set_title('Average normalization impact on all metrics')
|
| 502 |
ax.set_xlabel('Normalization Type')
|
| 503 |
-
ax.set_ylabel(f'Difference in {metric}')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 504 |
ax.grid(True)
|
| 505 |
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
|
| 506 |
min_val = diff_in_metrics[metric].min()
|
|
@@ -532,6 +819,10 @@ with analysis:
|
|
| 532 |
dataset_short_name = "BIGOS"
|
| 533 |
elif dataset == "pelcra/pl-asr-pelcra-for-bigos-secret":
|
| 534 |
dataset_short_name = "PELCRA"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 535 |
else:
|
| 536 |
dataset_short_name = "UNKNOWN"
|
| 537 |
|
|
|
|
| 1 |
import os
|
| 2 |
import streamlit as st
|
| 3 |
import pandas as pd
|
| 4 |
+
from constants import BIGOS_INFO, PELCRA_INFO, POLEVAL_INFO, ANALYSIS_INFO, ABOUT_INFO, INSPECTION_INFO, COMPARISON_INFO
|
| 5 |
from utils import read_latest_results, basic_stats_per_dimension, retrieve_asr_systems_meta_from_the_catalog, box_plot_per_dimension,box_plot_per_dimension_subsets, box_plot_per_dimension_with_colors, get_total_audio_duration, check_impact_of_normalization, calculate_wer_per_meta_category, calculate_wer_per_audio_feature
|
| 6 |
from app_utils import calculate_height_to_display, filter_dataframe
|
| 7 |
import matplotlib.pyplot as plt
|
|
|
|
| 22 |
# select the dataset to display results
|
| 23 |
datasets_secret = [
|
| 24 |
"amu-cai/pl-asr-bigos-v2-secret",
|
| 25 |
+
"pelcra/pl-asr-pelcra-for-bigos-secret",
|
| 26 |
+
"michaljunczyk/test_A_poleval_24",
|
| 27 |
+
"michaljunczyk/test_B_poleval_24"]
|
| 28 |
|
| 29 |
datasets_public = []
|
| 30 |
#["amu-cai/pl-asr-bigos-synth-med"]
|
|
|
|
| 32 |
|
| 33 |
st.set_page_config(layout="wide")
|
| 34 |
|
| 35 |
+
about, lead_bigos, lead_pelcra, lead_poleval_a, lead_poleval_b, analysis, interactive_comparison = st.tabs(["About", "BIGOS", "PELCRA", "PolEval test-A", "PolEval test-B", "Evaluation scenarios", "Interactive dashboard"])
|
| 36 |
# "Results inspection""Results inspection"
|
| 37 |
# inspection
|
| 38 |
# acknowledgements, changelog, faq, todos = st.columns(4)
|
|
|
|
| 368 |
if metric == 'Average':
|
| 369 |
ax.set_title('Average normalization impact on all metrics')
|
| 370 |
ax.set_xlabel('Normalization Type')
|
| 371 |
+
ax.set_ylabel(f'Difference in {metric} [pp]')
|
| 372 |
ax.grid(True)
|
| 373 |
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
|
| 374 |
min_val = diff_in_metrics[metric].min()
|
|
|
|
| 502 |
if metric == 'Average':
|
| 503 |
ax.set_title('Average normalization impact on all metrics')
|
| 504 |
ax.set_xlabel('Normalization Type')
|
| 505 |
+
ax.set_ylabel(f'Difference in {metric} [pp]')
|
| 506 |
+
ax.grid(True)
|
| 507 |
+
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
|
| 508 |
+
min_val = diff_in_metrics[metric].min()
|
| 509 |
+
ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1])
|
| 510 |
+
|
| 511 |
+
for bar in bars:
|
| 512 |
+
height = bar.get_height()
|
| 513 |
+
ax.annotate(f'{height:.2f}',
|
| 514 |
+
xy=(bar.get_x() + bar.get_width() / 2, height),
|
| 515 |
+
xytext=(0, -12), # 3 points vertical offset
|
| 516 |
+
textcoords="offset points",
|
| 517 |
+
ha='center', va='bottom')
|
| 518 |
+
|
| 519 |
+
# Display the plot in Streamlit
|
| 520 |
+
st.pyplot(fig)
|
| 521 |
+
|
| 522 |
+
##################### APPENDIX #########################
|
| 523 |
+
st.header("Appendix - Full evaluation results per subset for all evaluated systems")
|
| 524 |
+
# select only the columns we want to plot
|
| 525 |
+
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
|
| 526 |
+
st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False)
|
| 527 |
+
|
| 528 |
+
with lead_poleval_a:
|
| 529 |
+
st.title("PolEval test A Leaderboard")
|
| 530 |
+
st.markdown(POLEVAL_INFO, unsafe_allow_html=True)
|
| 531 |
+
|
| 532 |
+
# configuration for tab
|
| 533 |
+
dataset = "michaljunczyk/test_A_poleval_24"
|
| 534 |
+
dataset_short_name = "PolEval test A"
|
| 535 |
+
dataset_version = "V1"
|
| 536 |
+
eval_date = "November 2024"
|
| 537 |
+
split = "test"
|
| 538 |
+
norm_type = "all"
|
| 539 |
+
ref_type = "orig"
|
| 540 |
+
|
| 541 |
+
# common, reusable part for all tabs presenting leaderboards for specific datasets
|
| 542 |
+
#### DATA LOADING AND AUGMENTATION ####
|
| 543 |
+
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
# filter only the ref_type and norm_type we want to analyze
|
| 547 |
+
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
|
| 548 |
+
# filter only the ref_type and norm_type we want to analyze
|
| 549 |
+
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]
|
| 550 |
+
|
| 551 |
+
##### PARAMETERS CALCULATION ####
|
| 552 |
+
evaluated_systems_list = df_per_sample["system"].unique()
|
| 553 |
+
no_of_evaluated_systems = len(evaluated_systems_list)
|
| 554 |
+
no_of_eval_subsets = len(df_per_dataset["subset"].unique())
|
| 555 |
+
no_of_test_cases = len(df_per_sample)
|
| 556 |
+
no_of_unique_recordings = len(df_per_sample["id"].unique())
|
| 557 |
+
total_audio_duration_hours = get_total_audio_duration(df_per_sample)
|
| 558 |
+
no_of_unique_speakers = len(df_per_sample["speaker_id"].unique())
|
| 559 |
+
|
| 560 |
+
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")
|
| 561 |
+
|
| 562 |
+
# MOST IMPORTANT RESULTS
|
| 563 |
+
analysis_dim = "system"
|
| 564 |
+
metric = "WER"
|
| 565 |
+
st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name))
|
| 566 |
+
fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {}".format(metric, analysis_dim), analysis_dim, metric + "[%]","System", "Type")
|
| 567 |
+
st.pyplot(fig, clear_figure=True, use_container_width=True)
|
| 568 |
+
|
| 569 |
+
st.header("Benchmark details")
|
| 570 |
+
st.markdown("**Evaluation date:** {}".format(eval_date))
|
| 571 |
+
st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems))
|
| 572 |
+
st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets))
|
| 573 |
+
st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset)))
|
| 574 |
+
st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers))
|
| 575 |
+
st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings))
|
| 576 |
+
st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours))
|
| 577 |
+
st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases))
|
| 578 |
+
st.markdown("**Dataset:** {}".format(dataset))
|
| 579 |
+
st.markdown("**Dataset version:** {}".format(dataset_version))
|
| 580 |
+
st.markdown("**Split:** {}".format(split))
|
| 581 |
+
st.markdown("**Text reference type:** {}".format(ref_type))
|
| 582 |
+
st.markdown("**Normalization steps:** {}".format(norm_type))
|
| 583 |
+
|
| 584 |
+
########### RESULTS ################
|
| 585 |
+
st.header("WER (Word Error Rate) analysis")
|
| 586 |
+
st.subheader("Average WER for the whole dataset")
|
| 587 |
+
df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset")
|
| 588 |
+
st.dataframe(df_wer_avg)
|
| 589 |
+
|
| 590 |
+
st.subheader("Comparison of average WER for free and commercial systems")
|
| 591 |
+
df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type")
|
| 592 |
+
st.dataframe(df_wer_avg_free_commercial)
|
| 593 |
+
|
| 594 |
+
##################### PER SYSTEM ANALYSIS #########################
|
| 595 |
+
analysis_dim = "system"
|
| 596 |
+
metric = "WER"
|
| 597 |
+
metric2 = "CER"
|
| 598 |
+
|
| 599 |
+
st.subheader("Table showing {} and {}".format(metric, metric2))
|
| 600 |
+
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
|
| 601 |
+
df_cer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric2, analysis_dim)
|
| 602 |
+
# merge the two dataframes, keep only one column for each metric with average values
|
| 603 |
+
df_wer_cer_per_system_from_per_dataset = pd.merge(df_wer_per_system_from_per_dataset, df_cer_per_system_from_per_dataset, on='system')
|
| 604 |
+
# drop top level of the column index
|
| 605 |
+
df_wer_cer_per_system_from_per_dataset = df_wer_cer_per_system_from_per_dataset.reset_index()
|
| 606 |
+
|
| 607 |
+
# keep columns system, avg_WER and avg_CER only
|
| 608 |
+
df_wer_cer_per_system_from_per_dataset = df_wer_cer_per_system_from_per_dataset[['system', 'avg_WER', 'avg_CER']]
|
| 609 |
+
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_cer_per_system_from_per_dataset)
|
| 610 |
+
|
| 611 |
+
st.dataframe(df_wer_cer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )
|
| 612 |
+
|
| 613 |
+
##################### PER SUBSET ANALYSIS #########################
|
| 614 |
+
analysis_dim = "subset"
|
| 615 |
+
metric = "WER"
|
| 616 |
+
|
| 617 |
+
st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim))
|
| 618 |
+
fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system")
|
| 619 |
+
st.pyplot(fig, clear_figure=True, use_container_width=False)
|
| 620 |
+
|
| 621 |
+
### IMPACT OF NORMALIZATION ON ERROR RATES #####
|
| 622 |
+
# Calculate the average impact of various norm_types for all datasets and systems
|
| 623 |
+
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
|
| 624 |
+
diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols)
|
| 625 |
+
st.subheader("Impact of normalization on WER")
|
| 626 |
+
st.dataframe(diff_in_metrics, use_container_width=False)
|
| 627 |
+
|
| 628 |
+
# Visualizing the differences in metrics graphically with data labels
|
| 629 |
+
# Visualizing the differences in metrics graphically with data labels
|
| 630 |
+
fig, axs = plt.subplots(3, 2, figsize=(12, 12))
|
| 631 |
+
fig.subplots_adjust(hspace=0.6, wspace=0.6)
|
| 632 |
+
|
| 633 |
+
#remove the sixth subplot
|
| 634 |
+
fig.delaxes(axs[2,1])
|
| 635 |
+
|
| 636 |
+
metrics = ['SER', 'WER', 'MER', 'CER', "Average"]
|
| 637 |
+
colors = ['blue', 'orange', 'green', 'red', 'purple']
|
| 638 |
+
|
| 639 |
+
for ax, metric, color in zip(axs.flatten(), metrics, colors):
|
| 640 |
+
bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color)
|
| 641 |
+
ax.set_title(f'Normalization impact on {metric}')
|
| 642 |
+
if metric == 'Average':
|
| 643 |
+
ax.set_title('Average normalization impact on all metrics')
|
| 644 |
+
ax.set_xlabel('Normalization Type')
|
| 645 |
+
ax.set_ylabel(f'Difference in {metric} [pp]')
|
| 646 |
+
ax.grid(True)
|
| 647 |
+
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
|
| 648 |
+
min_val = diff_in_metrics[metric].min()
|
| 649 |
+
ax.set_ylim([min_val * 1.1, diff_in_metrics[metric].max() * 1.1])
|
| 650 |
+
|
| 651 |
+
for bar in bars:
|
| 652 |
+
height = bar.get_height()
|
| 653 |
+
ax.annotate(f'{height:.2f}',
|
| 654 |
+
xy=(bar.get_x() + bar.get_width() / 2, height),
|
| 655 |
+
xytext=(0, -12), # 3 points vertical offset
|
| 656 |
+
textcoords="offset points",
|
| 657 |
+
ha='center', va='bottom')
|
| 658 |
+
|
| 659 |
+
# Display the plot in Streamlit
|
| 660 |
+
st.pyplot(fig)
|
| 661 |
+
|
| 662 |
+
##################### APPENDIX #########################
|
| 663 |
+
st.header("Appendix - Full evaluation results per subset for all evaluated systems")
|
| 664 |
+
# select only the columns we want to plot
|
| 665 |
+
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
|
| 666 |
+
st.dataframe(df_per_dataset_selected_cols, hide_index=True, use_container_width=False)
|
| 667 |
+
|
| 668 |
+
with lead_poleval_b:
|
| 669 |
+
st.title("PolEval test B Leaderboard")
|
| 670 |
+
st.markdown(POLEVAL_INFO, unsafe_allow_html=True)
|
| 671 |
+
|
| 672 |
+
# configuration for tab
|
| 673 |
+
dataset = "michaljunczyk/test_B_poleval_24"
|
| 674 |
+
dataset_short_name = "PolEval test B"
|
| 675 |
+
dataset_version = "V1"
|
| 676 |
+
eval_date = "November 2024"
|
| 677 |
+
split = "test"
|
| 678 |
+
norm_type = "all"
|
| 679 |
+
ref_type = "orig"
|
| 680 |
+
|
| 681 |
+
# common, reusable part for all tabs presenting leaderboards for specific datasets
|
| 682 |
+
#### DATA LOADING AND AUGMENTATION ####
|
| 683 |
+
df_per_sample_all, df_per_dataset_all = read_latest_results(dataset, split, codename_to_shortname_mapping)
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
# filter only the ref_type and norm_type we want to analyze
|
| 687 |
+
df_per_sample = df_per_sample_all[(df_per_sample_all["ref_type"] == ref_type) & (df_per_sample_all["norm_type"] == norm_type)]
|
| 688 |
+
# filter only the ref_type and norm_type we want to analyze
|
| 689 |
+
df_per_dataset = df_per_dataset_all[(df_per_dataset_all["ref_type"] == ref_type) & (df_per_dataset_all["norm_type"] == norm_type)]
|
| 690 |
+
|
| 691 |
+
##### PARAMETERS CALCULATION ####
|
| 692 |
+
evaluated_systems_list = df_per_sample["system"].unique()
|
| 693 |
+
no_of_evaluated_systems = len(evaluated_systems_list)
|
| 694 |
+
no_of_eval_subsets = len(df_per_dataset["subset"].unique())
|
| 695 |
+
no_of_test_cases = len(df_per_sample)
|
| 696 |
+
no_of_unique_recordings = len(df_per_sample["id"].unique())
|
| 697 |
+
total_audio_duration_hours = get_total_audio_duration(df_per_sample)
|
| 698 |
+
no_of_unique_speakers = len(df_per_sample["speaker_id"].unique())
|
| 699 |
+
|
| 700 |
+
df_per_dataset_with_asr_systems_meta = pd.merge(df_per_dataset, df_evaluated_systems, how="left", left_on="system", right_on="Shortname")
|
| 701 |
+
|
| 702 |
+
# MOST IMPORTANT RESULTS
|
| 703 |
+
analysis_dim = "system"
|
| 704 |
+
metric = "WER"
|
| 705 |
+
st.subheader("Leaderboard - Median {} per ASR {} across all subsets of {} dataset".format(metric, analysis_dim, dataset_short_name))
|
| 706 |
+
fig = box_plot_per_dimension_with_colors(df_per_dataset_with_asr_systems_meta, metric, analysis_dim, "{} per {}".format(metric, analysis_dim), analysis_dim, metric + "[%]","System", "Type")
|
| 707 |
+
st.pyplot(fig, clear_figure=True, use_container_width=True)
|
| 708 |
+
|
| 709 |
+
st.header("Benchmark details")
|
| 710 |
+
st.markdown("**Evaluation date:** {}".format(eval_date))
|
| 711 |
+
st.markdown("**Number of evaluated system-model variants:** {}".format(no_of_evaluated_systems))
|
| 712 |
+
st.markdown("**Number of evaluated subsets:** {}".format(no_of_eval_subsets))
|
| 713 |
+
st.markdown("**Number of evaluated system-model-subsets combinations**: {}".format(len(df_per_dataset)))
|
| 714 |
+
st.markdown("**Number of unique speakers**: {}".format(no_of_unique_speakers))
|
| 715 |
+
st.markdown("**Number of unique recordings used for evaluation:** {}".format(no_of_unique_recordings))
|
| 716 |
+
st.markdown("**Total size of the dataset:** {:.2f} hours".format(total_audio_duration_hours))
|
| 717 |
+
st.markdown("**Total number of test cases (audio-hypothesis pairs):** {}".format(no_of_test_cases))
|
| 718 |
+
st.markdown("**Dataset:** {}".format(dataset))
|
| 719 |
+
st.markdown("**Dataset version:** {}".format(dataset_version))
|
| 720 |
+
st.markdown("**Split:** {}".format(split))
|
| 721 |
+
st.markdown("**Text reference type:** {}".format(ref_type))
|
| 722 |
+
st.markdown("**Normalization steps:** {}".format(norm_type))
|
| 723 |
+
|
| 724 |
+
########### RESULTS ################
|
| 725 |
+
st.header("WER (Word Error Rate) analysis")
|
| 726 |
+
st.subheader("Average WER for the whole dataset")
|
| 727 |
+
df_wer_avg = basic_stats_per_dimension(df_per_dataset, "WER", "dataset")
|
| 728 |
+
st.dataframe(df_wer_avg)
|
| 729 |
+
|
| 730 |
+
st.subheader("Comparison of average WER for free and commercial systems")
|
| 731 |
+
df_wer_avg_free_commercial = basic_stats_per_dimension(df_per_dataset_with_asr_systems_meta, "WER", "Type")
|
| 732 |
+
st.dataframe(df_wer_avg_free_commercial)
|
| 733 |
+
|
| 734 |
+
##################### PER SYSTEM ANALYSIS #########################
|
| 735 |
+
analysis_dim = "system"
|
| 736 |
+
metric = "WER"
|
| 737 |
+
metric2 = "CER"
|
| 738 |
+
|
| 739 |
+
st.subheader("Table showing {} and {}".format(metric, metric2))
|
| 740 |
+
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
|
| 741 |
+
df_cer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric2, analysis_dim)
|
| 742 |
+
# merge the two dataframes, keep only one column for each metric with average values
|
| 743 |
+
df_wer_cer_per_system_from_per_dataset = pd.merge(df_wer_per_system_from_per_dataset, df_cer_per_system_from_per_dataset, on='system')
|
| 744 |
+
# drop top level of the column index
|
| 745 |
+
df_wer_cer_per_system_from_per_dataset = df_wer_cer_per_system_from_per_dataset.reset_index()
|
| 746 |
+
|
| 747 |
+
# keep columns system, avg_WER and avg_CER only
|
| 748 |
+
df_wer_cer_per_system_from_per_dataset = df_wer_cer_per_system_from_per_dataset[['system', 'avg_WER', 'avg_CER']]
|
| 749 |
+
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_cer_per_system_from_per_dataset)
|
| 750 |
+
|
| 751 |
+
st.dataframe(df_wer_cer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )
|
| 752 |
+
|
| 753 |
+
|
| 754 |
+
##################### PER SUBSET ANALYSIS #########################
|
| 755 |
+
analysis_dim = "subset"
|
| 756 |
+
metric = "WER"
|
| 757 |
+
st.subheader("Table showing {} per {} sorted by median values".format(metric, analysis_dim))
|
| 758 |
+
df_wer_per_system_from_per_dataset = basic_stats_per_dimension(df_per_dataset, metric, analysis_dim)
|
| 759 |
+
h_df_per_system_per_dataset = calculate_height_to_display(df_wer_per_system_from_per_dataset)
|
| 760 |
+
st.dataframe(df_wer_per_system_from_per_dataset, height = h_df_per_system_per_dataset )
|
| 761 |
+
|
| 762 |
+
st.subheader("Boxplot showing {} per {} sorted by median values".format(metric, analysis_dim))
|
| 763 |
+
fig = box_plot_per_dimension_subsets(df_per_dataset, metric, analysis_dim, "{} per {} for dataset {}".format(metric, analysis_dim, dataset_short_name), analysis_dim +' of dataset ' + dataset_short_name , metric + " (%)", "system")
|
| 764 |
+
st.pyplot(fig, clear_figure=True, use_container_width=True)
|
| 765 |
+
|
| 766 |
+
### IMPACT OF NORMALIZATION ON ERROR RATES #####
|
| 767 |
+
# Calculate the average impact of various norm_types for all datasets and systems
|
| 768 |
+
df_per_dataset_selected_cols = df_per_dataset_all[cols_to_select_all]
|
| 769 |
+
diff_in_metrics = check_impact_of_normalization(df_per_dataset_selected_cols)
|
| 770 |
+
st.subheader("Impact of normalization on WER")
|
| 771 |
+
st.dataframe(diff_in_metrics, use_container_width=False)
|
| 772 |
+
|
| 773 |
+
# Visualizing the differences in metrics graphically with data labels
|
| 774 |
+
# Visualizing the differences in metrics graphically with data labels
|
| 775 |
+
fig, axs = plt.subplots(3, 2, figsize=(12, 12))
|
| 776 |
+
fig.subplots_adjust(hspace=0.6, wspace=0.6)
|
| 777 |
+
|
| 778 |
+
#remove the sixth subplot
|
| 779 |
+
fig.delaxes(axs[2,1])
|
| 780 |
+
|
| 781 |
+
metrics = ['SER', 'WER', 'MER', 'CER', "Average"]
|
| 782 |
+
colors = ['blue', 'orange', 'green', 'red', 'purple']
|
| 783 |
+
|
| 784 |
+
for ax, metric, color in zip(axs.flatten(), metrics, colors):
|
| 785 |
+
bars = ax.bar(diff_in_metrics.index, diff_in_metrics[metric], color=color)
|
| 786 |
+
ax.set_title(f'Normalization impact on {metric}')
|
| 787 |
+
if metric == 'Average':
|
| 788 |
+
ax.set_title('Average normalization impact on all metrics')
|
| 789 |
+
ax.set_xlabel('Normalization Type')
|
| 790 |
+
ax.set_ylabel(f'Difference in {metric} [pp]')
|
| 791 |
ax.grid(True)
|
| 792 |
ax.set_xticklabels(diff_in_metrics.index, rotation=45, ha='right')
|
| 793 |
min_val = diff_in_metrics[metric].min()
|
|
|
|
| 819 |
dataset_short_name = "BIGOS"
|
| 820 |
elif dataset == "pelcra/pl-asr-pelcra-for-bigos-secret":
|
| 821 |
dataset_short_name = "PELCRA"
|
| 822 |
+
elif dataset == "michaljunczyk/test_A_poleval_24":
|
| 823 |
+
dataset_short_name = "PolEval test A"
|
| 824 |
+
elif dataset == "michaljunczyk/test_B_poleval_24":
|
| 825 |
+
dataset_short_name = "PolEval test B"
|
| 826 |
else:
|
| 827 |
dataset_short_name = "UNKNOWN"
|
| 828 |
|
constants.py
CHANGED
|
@@ -17,6 +17,8 @@ Learn more [here](https://huggingface.co/datasets/amu-cai/pl-asr-bigos-v2)"
|
|
| 17 |
PELCRA_INFO = "PELCRA for BIGOS is the subset of speech corpora created by the [PELCRA group](http://pelcra.pl/new/), curated for the BIGOS benchmark by the [AMU-CAI team](https://huggingface.co/amu-cai). \
|
| 18 |
Learn more [here](https://huggingface.co/datasets/pelcra/pl-asr-pelcra-for-bigos)"
|
| 19 |
|
|
|
|
|
|
|
| 20 |
ANALYSIS_INFO = "Here we examine ASR accuracy depending on the system type, model size, audio duration, speaking rate and speaker charactertics (age and gender)"
|
| 21 |
|
| 22 |
INSPECTION_INFO = "Here you can inspect the performance of specific ASR systems on the specific audio samples"
|
|
|
|
| 17 |
PELCRA_INFO = "PELCRA for BIGOS is the subset of speech corpora created by the [PELCRA group](http://pelcra.pl/new/), curated for the BIGOS benchmark by the [AMU-CAI team](https://huggingface.co/amu-cai). \
|
| 18 |
Learn more [here](https://huggingface.co/datasets/pelcra/pl-asr-pelcra-for-bigos)"
|
| 19 |
|
| 20 |
+
POLEVAL_INFO = "PolEval is test used for Polish ASR challenge. It consists of recordings from BIGOS and PELCRA datasets. For details see: [PolEval 2024 - Task 3 - ASR](https://poleval.pl/tasks/task3)"
|
| 21 |
+
|
| 22 |
ANALYSIS_INFO = "Here we examine ASR accuracy depending on the system type, model size, audio duration, speaking rate and speaker charactertics (age and gender)"
|
| 23 |
|
| 24 |
INSPECTION_INFO = "Here you can inspect the performance of specific ASR systems on the specific audio samples"
|