amyakir's picture
Update app.py
548a255 verified
raw
history blame
1.94 kB
# app.py
import gradio as gr
from transformers import pipeline
import torch
import tempfile
import os
from TTS.api import TTS
import whisper
# Load question-generation pipeline (use a lightweight model)
qg_pipeline = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg")
# Load TTS model
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
# Load Whisper STT model
whisper_model = whisper.load_model("base")
# Generate question and audio from input text
def generate_question(text):
output = qg_pipeline("generate question: " + text, max_length=64, clean_up_tokenization_spaces=True)[0]['generated_text']
# Save TTS audio to temp file
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
tts.tts_to_file(text=output, file_path=fp.name)
audio_path = fp.name
return output, audio_path
# Transcribe user audio answer
def transcribe_audio(audio):
audio = whisper.load_audio(audio)
audio = whisper.pad_or_trim(audio)
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device)
options = whisper.DecodingOptions()
result = whisper.decode(whisper_model, mel, options)
return result.text
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("### Voice Q&A Generator")
with gr.Row():
input_text = gr.Textbox(label="Coursebook Text")
generate_btn = gr.Button("Generate Question")
question_out = gr.Textbox(label="Generated Question")
audio_out = gr.Audio(label="AI Question (Audio)", type="filepath")
with gr.Row():
user_audio = gr.Audio(source="microphone", type="filepath", label="Your Answer")
transcribed_text = gr.Textbox(label="Transcribed Answer")
generate_btn.click(fn=generate_question, inputs=input_text, outputs=[question_out, audio_out])
user_audio.change(fn=transcribe_audio, inputs=user_audio, outputs=transcribed_text)
demo.launch()