Spaces:
Sleeping
Sleeping
# app.py | |
import gradio as gr | |
from transformers import pipeline | |
import torch | |
import tempfile | |
import os | |
from TTS.api import TTS | |
import whisper | |
# Load question-generation pipeline (use a lightweight model) | |
qg_pipeline = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg") | |
# Load TTS model | |
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False) | |
# Load Whisper STT model | |
whisper_model = whisper.load_model("base") | |
# Generate question and audio from input text | |
def generate_question(text): | |
output = qg_pipeline("generate question: " + text, max_length=64, clean_up_tokenization_spaces=True)[0]['generated_text'] | |
# Save TTS audio to temp file | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp: | |
tts.tts_to_file(text=output, file_path=fp.name) | |
audio_path = fp.name | |
return output, audio_path | |
# Transcribe user audio answer | |
def transcribe_audio(audio): | |
audio = whisper.load_audio(audio) | |
audio = whisper.pad_or_trim(audio) | |
mel = whisper.log_mel_spectrogram(audio).to(whisper_model.device) | |
options = whisper.DecodingOptions() | |
result = whisper.decode(whisper_model, mel, options) | |
return result.text | |
# Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("### Voice Q&A Generator") | |
with gr.Row(): | |
input_text = gr.Textbox(label="Coursebook Text") | |
generate_btn = gr.Button("Generate Question") | |
question_out = gr.Textbox(label="Generated Question") | |
audio_out = gr.Audio(label="AI Question (Audio)", type="filepath") | |
with gr.Row(): | |
user_audio = gr.Audio(source="microphone", type="filepath", label="Your Answer") | |
transcribed_text = gr.Textbox(label="Transcribed Answer") | |
generate_btn.click(fn=generate_question, inputs=input_text, outputs=[question_out, audio_out]) | |
user_audio.change(fn=transcribe_audio, inputs=user_audio, outputs=transcribed_text) | |
demo.launch() |