Spaces:
Sleeping
Update app.py
Browse filesimport gradio as gr
from transformers import pipeline
import torch
from TTS.api import TTS
import tempfile
import os
import speech_recognition as sr
from difflib import SequenceMatcher
# Load models
qg_pipeline = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg")
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
# Simulate QA by extracting key sentence from input text (placeholder)
def extract_answer(question, context):
for line in context.split("\n"):
if any(word.lower() in line.lower() for word in question.split()[:3]):
return line
return ""
def generate_questions(text):
output = qg_pipeline(f"generate questions: {text}", num_return_sequences=3)
questions = [q["generated_text"] for q in output]
return (questions, text, 0) # this tuple is stored in state
def ask_question(state):
questions, context, idx = state
if idx >= len(questions):
return "β
All questions asked.", None, state
question = questions[idx]
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
tts.tts_to_file(text=question, file_path=fp.name)
audio_path = fp.name
return question, audio_path, (questions, context, idx + 1)
def transcribe_and_feedback(audio_path, state):
questions, context, idx = state
if idx == 0 or idx > len(questions):
return "Please ask a question first.", state
recognizer = sr.Recognizer()
with sr.AudioFile(audio_path) as source:
audio_data = recognizer.record(source)
try:
user_answer = recognizer.recognize_google(audio_data)
except:
return "β Could not understand your answer.", state
# Compare with expected answer
question = questions[idx - 1] # subtract 1 because idx was already incremented
expected = extract_answer(question, context)
ratio = SequenceMatcher(None, user_answer.lower(), expected.lower()).ratio()
if ratio > 0.6:
feedback = f"β
Good answer: {user_answer}"
else:
feedback = f"β Try again. You said: {user_answer}"
return feedback, (questions, context, idx)
with gr.Blocks() as app:
gr.Markdown("### π Interactive Speaking Practice with Coursebook Dialogues")
with gr.Row():
course_text = gr.Textbox(lines=8, label="π Paste Coursebook Text")
gen_btn = gr.Button("π Generate Questions")
question_text = gr.Textbox(label="ποΈ Current Question")
question_audio = gr.Audio(label="π Listen to Question", type="filepath")
ask_btn = gr.Button("βΆοΈ Ask Next Question")
user_audio = gr.Audio(label="π§ Your Spoken Answer", sources="microphone", type="filepath")
transcribe_btn = gr.Button("π Submit Answer")
feedback_output = gr.Textbox(label="π¨οΈ Feedback")
conversation_state = gr.State()
gen_btn.click(fn=generate_questions, inputs=course_text, outputs=conversation_state)
ask_btn.click(fn=ask_question, inputs=conversation_state, outputs=[question_text, question_audio, conversation_state])
transcribe_btn.click(fn=transcribe_and_feedback, inputs=[user_audio, conversation_state], outputs=[feedback_output, conversation_state])
app.launch()
@@ -1,83 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
from transformers import pipeline
|
3 |
-
import torch
|
4 |
-
from TTS.api import TTS
|
5 |
-
import tempfile
|
6 |
-
import os
|
7 |
-
import speech_recognition as sr
|
8 |
-
from difflib import SequenceMatcher
|
9 |
-
|
10 |
-
# Load models
|
11 |
-
qg_pipeline = pipeline("text2text-generation", model="valhalla/t5-small-e2e-qg")
|
12 |
-
tts = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False, gpu=False)
|
13 |
-
|
14 |
-
# Simulate QA by extracting key sentence from input text (placeholder for real QA)
|
15 |
-
def extract_answer(question, context):
|
16 |
-
for line in context.split("\n"):
|
17 |
-
if any(word.lower() in line.lower() for word in question.split()[:3]):
|
18 |
-
return line
|
19 |
-
return ""
|
20 |
-
|
21 |
-
def generate_questions(text):
|
22 |
-
output = qg_pipeline(f"generate questions: {text}", num_return_sequences=3)
|
23 |
-
questions = [q["generated_text"] for q in output]
|
24 |
-
return questions, text, 0 # store context and index
|
25 |
-
|
26 |
-
def ask_question(state):
|
27 |
-
questions, context, idx = state
|
28 |
-
if idx >= len(questions):
|
29 |
-
return "All questions asked.", None, state
|
30 |
-
|
31 |
-
question = questions[idx]
|
32 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as fp:
|
33 |
-
tts.tts_to_file(text=question, file_path=fp.name)
|
34 |
-
audio_path = fp.name
|
35 |
-
|
36 |
-
return question, audio_path, (questions, context, idx)
|
37 |
-
|
38 |
-
def transcribe_and_feedback(audio_path, state):
|
39 |
-
questions, context, idx = state
|
40 |
-
if idx == 0 or idx > len(questions):
|
41 |
-
return "Please ask a question first.", state
|
42 |
-
|
43 |
-
recognizer = sr.Recognizer()
|
44 |
-
with sr.AudioFile(audio_path) as source:
|
45 |
-
audio_data = recognizer.record(source)
|
46 |
-
try:
|
47 |
-
user_answer = recognizer.recognize_google(audio_data)
|
48 |
-
except:
|
49 |
-
return "Could not understand the answer.", state
|
50 |
-
|
51 |
-
# Simulate expected answer
|
52 |
-
question = questions[idx - 1]
|
53 |
-
expected = extract_answer(question, context)
|
54 |
-
ratio = SequenceMatcher(None, user_answer.lower(), expected.lower()).ratio()
|
55 |
-
if ratio > 0.6:
|
56 |
-
feedback = f"β
Good answer: {user_answer}"
|
57 |
-
else:
|
58 |
-
feedback = f"β Try again. You said: {user_answer}"
|
59 |
-
|
60 |
-
return feedback, (questions, context, idx)
|
61 |
-
|
62 |
-
with gr.Blocks() as app:
|
63 |
-
gr.Markdown("### π Interactive Q&A Lesson")
|
64 |
-
|
65 |
-
with gr.Row():
|
66 |
-
course_text = gr.Textbox(lines=8, label="Paste Coursebook Text")
|
67 |
-
gen_btn = gr.Button("π Generate Questions")
|
68 |
-
|
69 |
-
question_text = gr.Textbox(label="Current Question")
|
70 |
-
question_audio = gr.Audio(label="Listen to Question", type="filepath")
|
71 |
-
ask_btn = gr.Button("βΆοΈ Ask Next Question")
|
72 |
-
|
73 |
-
user_audio = gr.Audio(label="Your Spoken Answer", sources="microphone", type="filepath")
|
74 |
-
transcribe_btn = gr.Button("π Submit Answer")
|
75 |
-
feedback_output = gr.Textbox(label="Feedback")
|
76 |
-
|
77 |
-
conversation_state = gr.State()
|
78 |
-
|
79 |
-
gen_btn.click(generate_questions, inputs=course_text, outputs=[conversation_state, course_text, gr.State(0)])
|
80 |
-
ask_btn.click(ask_question, inputs=conversation_state, outputs=[question_text, question_audio, conversation_state])
|
81 |
-
transcribe_btn.click(transcribe_and_feedback, inputs=[user_audio, conversation_state], outputs=[feedback_output, conversation_state])
|
82 |
-
|
83 |
-
app.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|