Spaces:
Runtime error
Runtime error
File size: 5,842 Bytes
9c8703c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# from fastapi import FastAPI
# from fastapi.middleware.cors import CORSMiddleware
# from pydantic import BaseModel
# from typing import List
# from run_pipeline import format_survey_context, parse_topics_to_preferences
# from retriever import DefaultRetriever
# from tour_generator import TourGuideGenerator
# from query_rewritter import generate_human_query
# #uvicorn tour_api:app --reload
# import sys
# import os
# sys.path.append(os.path.join(os.path.dirname(__file__), "src_ubc"))
# app = FastAPI()
# # Enable CORS
# app.add_middleware(
# CORSMiddleware,
# allow_origins=["*"], # or ["http://localhost:3000"] for stricter config
# allow_credentials=True,
# allow_methods=["*"],
# allow_headers=["*"],
# )
# class SurveyInput(BaseModel):
# major: str
# age_group: str
# class_subject: str
# topics_of_interest: List[str]
# exhibit_name: str
# tour_length_minutes: int
# additional_notes: str = ""
# @app.post("/generate")
# def generate_outputs(survey: SurveyInput):
# survey_dict = survey.dict()
# print("π§ͺ Survey Dict:", survey_dict)
# context = format_survey_context(survey_dict)
# print("π Context:", context)
# preferences = parse_topics_to_preferences(survey_dict["topics_of_interest"])
# print("π― Preferences:", preferences)
# preferences.exhibits = [survey_dict["exhibit_name"]]
# rewritten_query = generate_human_query(preferences)
# print("βοΈ Rewritten Query:", rewritten_query)
# retriever = DefaultRetriever()
# relevant_chunks = retriever._retrieve_with_text(rewritten_query, preferences, k=5)
# print("π Retrieved Chunks:", relevant_chunks)
# generator = TourGuideGenerator()
# return {
# "itinerary": generator.generate(
# "itinerary",
# context,
# relevant_chunks,
# survey_id="api",
# tour_length_minutes=survey_dict["tour_length_minutes"]
# ),
# "talking_points": generator.generate(
# prompt_type="talking_points",
# context=context,
# exhibit_chunks=relevant_chunks,
# survey_id="api"
# ),
# "engagement_tips": generator.generate(
# prompt_type="engagement_tips",
# context=context,
# exhibit_chunks=relevant_chunks,
# survey_id="api"
# )
# }
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from typing import List
from backend.run_pipeline import format_survey_context, parse_topics_to_preferences
from backend.retriever import DefaultRetriever
from backend.tour_generator import TourGuideGenerator
from backend.query_rewritter import generate_human_query
import sys
import os
sys.path.append(os.path.join(os.path.dirname(__file__), "src_ubc"))
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # or ["http://localhost:3000"] for stricter config
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class SurveyInput(BaseModel):
major: str
age_group: str
class_subject: str
topics_of_interest: List[str]
exhibit_name: str
tour_length_minutes: int
additional_notes: str = ""
@app.post("/generate")
def generate_outputs(survey: SurveyInput):
survey_dict = survey.dict()
print("π§ͺ Survey Dict:", survey_dict)
context = format_survey_context(survey_dict)
print("π Context:", context)
preferences = parse_topics_to_preferences(survey_dict["topics_of_interest"])
print("π― Preferences:", preferences)
preferences.exhibits = [survey_dict["exhibit_name"]]
rewritten_query = generate_human_query(preferences)
print("βοΈ Rewritten Query:", rewritten_query)
retriever = DefaultRetriever()
relevant_chunks = retriever._retrieve_with_text(rewritten_query, preferences, k=5)
print("π Retrieved Chunks:", relevant_chunks)
generator = TourGuideGenerator()
return {
"itinerary": generator.generate(
prompt_type="itinerary",
context=context,
exhibit_chunks=relevant_chunks,
survey_id="api",
major=survey_dict["major"],
age_group=survey_dict["age_group"],
class_subject=survey_dict["class_subject"],
topics_of_interest=survey_dict["topics_of_interest"],
exhibit_name=survey_dict["exhibit_name"],
tour_length_minutes=survey_dict["tour_length_minutes"],
additional_notes=survey_dict["additional_notes"]
),
"talking_points": generator.generate(
prompt_type="talking_points",
context=context,
exhibit_chunks=relevant_chunks,
survey_id="api",
major=survey_dict["major"],
age_group=survey_dict["age_group"],
class_subject=survey_dict["class_subject"],
topics_of_interest=survey_dict["topics_of_interest"],
exhibit_name=survey_dict["exhibit_name"],
tour_length_minutes=survey_dict["tour_length_minutes"],
additional_notes=survey_dict["additional_notes"]
),
"engagement_tips": generator.generate(
prompt_type="engagement_tips",
context=context,
exhibit_chunks=relevant_chunks,
survey_id="api",
major=survey_dict["major"],
age_group=survey_dict["age_group"],
class_subject=survey_dict["class_subject"],
topics_of_interest=survey_dict["topics_of_interest"],
exhibit_name=survey_dict["exhibit_name"],
tour_length_minutes=survey_dict["tour_length_minutes"],
additional_notes=survey_dict["additional_notes"]
)
}
|