Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -110,7 +110,7 @@ from sklearn.linear_model import LogisticRegression
|
|
| 110 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
|
| 111 |
import shap
|
| 112 |
|
| 113 |
-
# Configuration de la page
|
| 114 |
st.set_page_config(
|
| 115 |
page_title="ML Model Interpreter",
|
| 116 |
layout="wide",
|
|
@@ -120,25 +120,15 @@ st.set_page_config(
|
|
| 120 |
# CSS personnalisé
|
| 121 |
st.markdown("""
|
| 122 |
<style>
|
| 123 |
-
/* Couleurs principales */
|
| 124 |
-
:root {
|
| 125 |
-
--primary-blue: #1E88E5;
|
| 126 |
-
--light-blue: #90CAF9;
|
| 127 |
-
--dark-blue: #0D47A1;
|
| 128 |
-
--white: #FFFFFF;
|
| 129 |
-
}
|
| 130 |
-
|
| 131 |
-
/* En-tête principal */
|
| 132 |
.main-header {
|
| 133 |
-
color:
|
| 134 |
text-align: center;
|
| 135 |
padding: 1rem;
|
| 136 |
-
background: linear-gradient(90deg,
|
| 137 |
border-radius: 10px;
|
| 138 |
margin-bottom: 2rem;
|
| 139 |
}
|
| 140 |
|
| 141 |
-
/* Carte pour les métriques */
|
| 142 |
.metric-card {
|
| 143 |
background-color: white;
|
| 144 |
padding: 1.5rem;
|
|
@@ -147,44 +137,21 @@ st.markdown("""
|
|
| 147 |
margin-bottom: 1rem;
|
| 148 |
}
|
| 149 |
|
| 150 |
-
/* Style pour les sous-titres */
|
| 151 |
.sub-header {
|
| 152 |
-
color:
|
| 153 |
-
border-bottom: 2px solid
|
| 154 |
padding-bottom: 0.5rem;
|
| 155 |
margin-bottom: 1rem;
|
| 156 |
}
|
| 157 |
|
| 158 |
-
/* Style pour les valeurs de métriques */
|
| 159 |
.metric-value {
|
| 160 |
font-size: 1.5rem;
|
| 161 |
font-weight: bold;
|
| 162 |
-
color:
|
| 163 |
-
}
|
| 164 |
-
|
| 165 |
-
/* Style pour la barre latérale */
|
| 166 |
-
.sidebar .sidebar-content {
|
| 167 |
-
background-color: var(--white);
|
| 168 |
-
}
|
| 169 |
-
|
| 170 |
-
/* Style pour les boutons */
|
| 171 |
-
.stButton > button {
|
| 172 |
-
background-color: var(--primary-blue);
|
| 173 |
-
color: white;
|
| 174 |
-
border-radius: 5px;
|
| 175 |
-
border: none;
|
| 176 |
-
padding: 0.5rem 1rem;
|
| 177 |
}
|
| 178 |
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
background-color: var(--light-blue);
|
| 182 |
-
}
|
| 183 |
-
|
| 184 |
-
/* Style pour les selectbox */
|
| 185 |
-
.stSelectbox > div > div {
|
| 186 |
-
background-color: white;
|
| 187 |
-
border: 1px solid var(--light-blue);
|
| 188 |
}
|
| 189 |
</style>
|
| 190 |
""", unsafe_allow_html=True)
|
|
@@ -197,57 +164,80 @@ def custom_metric_card(title, value, prefix=""):
|
|
| 197 |
</div>
|
| 198 |
"""
|
| 199 |
|
| 200 |
-
def
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
fig.patch.set_facecolor('#FFFFFF')
|
| 204 |
for ax in fig.axes:
|
| 205 |
ax.set_facecolor('#F8F9FA')
|
| 206 |
-
ax.grid(True, linestyle='--', alpha=0.
|
| 207 |
ax.spines['top'].set_visible(False)
|
| 208 |
ax.spines['right'].set_visible(False)
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
|
| 213 |
def plot_model_performance(results):
|
| 214 |
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
|
| 215 |
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
|
| 216 |
-
|
| 217 |
-
# Configuration du style
|
| 218 |
-
plt.style.use('seaborn')
|
| 219 |
-
colors = ['#1E88E5', '#90CAF9', '#0D47A1', '#42A5F5']
|
| 220 |
|
| 221 |
# Training metrics
|
| 222 |
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
|
| 223 |
for model in results.keys()}
|
| 224 |
train_df = pd.DataFrame(train_data, index=metrics)
|
| 225 |
-
train_df.plot(kind='bar', ax=axes[0],
|
| 226 |
-
|
| 227 |
axes[0].set_ylim(0, 1)
|
| 228 |
|
| 229 |
# Test metrics
|
| 230 |
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
|
| 231 |
for model in results.keys()}
|
| 232 |
test_df = pd.DataFrame(test_data, index=metrics)
|
| 233 |
-
test_df.plot(kind='bar', ax=axes[1],
|
| 234 |
-
|
| 235 |
axes[1].set_ylim(0, 1)
|
| 236 |
|
| 237 |
# Style des graphiques
|
| 238 |
for ax in axes:
|
| 239 |
-
ax.set_facecolor('#F8F9FA')
|
| 240 |
-
ax.grid(True, linestyle='--', alpha=0.7)
|
| 241 |
-
ax.spines['top'].set_visible(False)
|
| 242 |
-
ax.spines['right'].set_visible(False)
|
| 243 |
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
|
|
|
|
| 244 |
|
| 245 |
plt.tight_layout()
|
| 246 |
return fig
|
| 247 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
def app():
|
| 249 |
-
|
| 250 |
-
|
| 251 |
|
| 252 |
# Load data
|
| 253 |
X_train, y_train, X_test, y_test, feature_names = load_data()
|
|
@@ -257,9 +247,11 @@ def app():
|
|
| 257 |
with st.spinner("🔄 Entraînement des modèles en cours..."):
|
| 258 |
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
|
| 259 |
|
| 260 |
-
# Sidebar
|
| 261 |
with st.sidebar:
|
| 262 |
-
st.markdown('<h2 style="color: #1E88E5;">Navigation</h2>',
|
|
|
|
|
|
|
| 263 |
selected_model = st.selectbox(
|
| 264 |
"📊 Sélectionnez un modèle",
|
| 265 |
list(st.session_state.model_results.keys())
|
|
@@ -277,31 +269,43 @@ def app():
|
|
| 277 |
|
| 278 |
current_model = st.session_state.model_results[selected_model]['model']
|
| 279 |
|
| 280 |
-
#
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
-
|
|
|
|
|
|
|
|
|
|
| 305 |
|
| 306 |
if __name__ == "__main__":
|
| 307 |
app()
|
|
|
|
| 110 |
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score, roc_curve
|
| 111 |
import shap
|
| 112 |
|
| 113 |
+
# Configuration de la page
|
| 114 |
st.set_page_config(
|
| 115 |
page_title="ML Model Interpreter",
|
| 116 |
layout="wide",
|
|
|
|
| 120 |
# CSS personnalisé
|
| 121 |
st.markdown("""
|
| 122 |
<style>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
.main-header {
|
| 124 |
+
color: #0D47A1;
|
| 125 |
text-align: center;
|
| 126 |
padding: 1rem;
|
| 127 |
+
background: linear-gradient(90deg, #FFFFFF 0%, #90CAF9 50%, #FFFFFF 100%);
|
| 128 |
border-radius: 10px;
|
| 129 |
margin-bottom: 2rem;
|
| 130 |
}
|
| 131 |
|
|
|
|
| 132 |
.metric-card {
|
| 133 |
background-color: white;
|
| 134 |
padding: 1.5rem;
|
|
|
|
| 137 |
margin-bottom: 1rem;
|
| 138 |
}
|
| 139 |
|
|
|
|
| 140 |
.sub-header {
|
| 141 |
+
color: #1E88E5;
|
| 142 |
+
border-bottom: 2px solid #90CAF9;
|
| 143 |
padding-bottom: 0.5rem;
|
| 144 |
margin-bottom: 1rem;
|
| 145 |
}
|
| 146 |
|
|
|
|
| 147 |
.metric-value {
|
| 148 |
font-size: 1.5rem;
|
| 149 |
font-weight: bold;
|
| 150 |
+
color: #1E88E5;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
}
|
| 152 |
|
| 153 |
+
div[data-testid="stMetricValue"] {
|
| 154 |
+
color: #1E88E5;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 155 |
}
|
| 156 |
</style>
|
| 157 |
""", unsafe_allow_html=True)
|
|
|
|
| 164 |
</div>
|
| 165 |
"""
|
| 166 |
|
| 167 |
+
def set_plot_style(fig):
|
| 168 |
+
"""Configure le style des graphiques"""
|
| 169 |
+
colors = ['#1E88E5', '#90CAF9', '#0D47A1', '#42A5F5']
|
|
|
|
| 170 |
for ax in fig.axes:
|
| 171 |
ax.set_facecolor('#F8F9FA')
|
| 172 |
+
ax.grid(True, linestyle='--', alpha=0.3, color='#666666')
|
| 173 |
ax.spines['top'].set_visible(False)
|
| 174 |
ax.spines['right'].set_visible(False)
|
| 175 |
+
ax.tick_params(axis='both', colors='#666666')
|
| 176 |
+
ax.set_axisbelow(True)
|
| 177 |
+
return fig, colors
|
| 178 |
|
| 179 |
def plot_model_performance(results):
|
| 180 |
metrics = ['accuracy', 'f1', 'precision', 'recall', 'roc_auc']
|
| 181 |
fig, axes = plt.subplots(1, 2, figsize=(15, 6))
|
| 182 |
+
fig, colors = set_plot_style(fig)
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
# Training metrics
|
| 185 |
train_data = {model: [results[model]['train_metrics'][metric] for metric in metrics]
|
| 186 |
for model in results.keys()}
|
| 187 |
train_df = pd.DataFrame(train_data, index=metrics)
|
| 188 |
+
train_df.plot(kind='bar', ax=axes[0], color=colors)
|
| 189 |
+
axes[0].set_title('Performance d\'Entraînement', color='#0D47A1', pad=20)
|
| 190 |
axes[0].set_ylim(0, 1)
|
| 191 |
|
| 192 |
# Test metrics
|
| 193 |
test_data = {model: [results[model]['test_metrics'][metric] for metric in metrics]
|
| 194 |
for model in results.keys()}
|
| 195 |
test_df = pd.DataFrame(test_data, index=metrics)
|
| 196 |
+
test_df.plot(kind='bar', ax=axes[1], color=colors)
|
| 197 |
+
axes[1].set_title('Performance de Test', color='#0D47A1', pad=20)
|
| 198 |
axes[1].set_ylim(0, 1)
|
| 199 |
|
| 200 |
# Style des graphiques
|
| 201 |
for ax in axes:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
plt.setp(ax.get_xticklabels(), rotation=45, ha='right')
|
| 203 |
+
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
|
| 204 |
|
| 205 |
plt.tight_layout()
|
| 206 |
return fig
|
| 207 |
|
| 208 |
+
def plot_feature_importance(model, feature_names, model_type):
|
| 209 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 210 |
+
fig, colors = set_plot_style(fig)
|
| 211 |
+
|
| 212 |
+
if model_type in ["Decision Tree", "Random Forest", "Gradient Boost"]:
|
| 213 |
+
importance = model.feature_importances_
|
| 214 |
+
elif model_type == "Logistic Regression":
|
| 215 |
+
importance = np.abs(model.coef_[0])
|
| 216 |
+
|
| 217 |
+
importance_df = pd.DataFrame({
|
| 218 |
+
'feature': feature_names,
|
| 219 |
+
'importance': importance
|
| 220 |
+
}).sort_values('importance', ascending=True)
|
| 221 |
+
|
| 222 |
+
ax.barh(importance_df['feature'], importance_df['importance'],
|
| 223 |
+
color='#1E88E5', alpha=0.8)
|
| 224 |
+
ax.set_title("Importance des Caractéristiques", color='#0D47A1', pad=20)
|
| 225 |
+
|
| 226 |
+
return fig
|
| 227 |
+
|
| 228 |
+
def plot_correlation_matrix(data):
|
| 229 |
+
fig, ax = plt.subplots(figsize=(10, 8))
|
| 230 |
+
fig, _ = set_plot_style(fig)
|
| 231 |
+
|
| 232 |
+
sns.heatmap(data.corr(), annot=True, cmap='coolwarm', center=0,
|
| 233 |
+
ax=ax, fmt='.2f', square=True)
|
| 234 |
+
ax.set_title("Matrice de Corrélation", color='#0D47A1', pad=20)
|
| 235 |
+
|
| 236 |
+
return fig
|
| 237 |
+
|
| 238 |
def app():
|
| 239 |
+
st.markdown('<h1 class="main-header">Interpréteur de Modèles ML</h1>',
|
| 240 |
+
unsafe_allow_html=True)
|
| 241 |
|
| 242 |
# Load data
|
| 243 |
X_train, y_train, X_test, y_test, feature_names = load_data()
|
|
|
|
| 247 |
with st.spinner("🔄 Entraînement des modèles en cours..."):
|
| 248 |
st.session_state.model_results = train_models(X_train, y_train, X_test, y_test)
|
| 249 |
|
| 250 |
+
# Sidebar
|
| 251 |
with st.sidebar:
|
| 252 |
+
st.markdown('<h2 style="color: #1E88E5;">Navigation</h2>',
|
| 253 |
+
unsafe_allow_html=True)
|
| 254 |
+
|
| 255 |
selected_model = st.selectbox(
|
| 256 |
"📊 Sélectionnez un modèle",
|
| 257 |
list(st.session_state.model_results.keys())
|
|
|
|
| 269 |
|
| 270 |
current_model = st.session_state.model_results[selected_model]['model']
|
| 271 |
|
| 272 |
+
# Main content
|
| 273 |
+
if page == "Performance des modèles":
|
| 274 |
+
st.markdown('<h2 class="sub-header">Performance des modèles</h2>',
|
| 275 |
+
unsafe_allow_html=True)
|
| 276 |
+
|
| 277 |
+
performance_fig = plot_model_performance(st.session_state.model_results)
|
| 278 |
+
st.pyplot(performance_fig)
|
| 279 |
+
|
| 280 |
+
st.markdown('<h3 class="sub-header">Métriques détaillées</h3>',
|
| 281 |
+
unsafe_allow_html=True)
|
| 282 |
+
|
| 283 |
+
col1, col2 = st.columns(2)
|
| 284 |
+
with col1:
|
| 285 |
+
st.markdown('<h4 style="color: #1E88E5;">Entraînement</h4>',
|
| 286 |
+
unsafe_allow_html=True)
|
| 287 |
+
for metric, value in st.session_state.model_results[selected_model]['train_metrics'].items():
|
| 288 |
+
st.markdown(custom_metric_card(metric.capitalize(), value),
|
| 289 |
+
unsafe_allow_html=True)
|
| 290 |
+
|
| 291 |
+
with col2:
|
| 292 |
+
st.markdown('<h4 style="color: #1E88E5;">Test</h4>',
|
| 293 |
+
unsafe_allow_html=True)
|
| 294 |
+
for metric, value in st.session_state.model_results[selected_model]['test_metrics'].items():
|
| 295 |
+
st.markdown(custom_metric_card(metric.capitalize(), value),
|
| 296 |
+
unsafe_allow_html=True)
|
| 297 |
+
|
| 298 |
+
elif page == "Analyse des caractéristiques":
|
| 299 |
+
st.markdown('<h2 class="sub-header">Analyse des caractéristiques</h2>',
|
| 300 |
+
unsafe_allow_html=True)
|
| 301 |
+
|
| 302 |
+
importance_fig = plot_feature_importance(current_model, feature_names, selected_model)
|
| 303 |
+
st.pyplot(importance_fig)
|
| 304 |
|
| 305 |
+
st.markdown('<h3 class="sub-header">Corrélations</h3>',
|
| 306 |
+
unsafe_allow_html=True)
|
| 307 |
+
corr_fig = plot_correlation_matrix(X_train)
|
| 308 |
+
st.pyplot(corr_fig)
|
| 309 |
|
| 310 |
if __name__ == "__main__":
|
| 311 |
app()
|