anbarasanGT commited on
Commit
ceb97ed
·
verified ·
1 Parent(s): 3271c7e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -68
app.py CHANGED
@@ -1,98 +1,127 @@
1
- # prompt: i need to add feature in Load GPT-Neo for creative text generation in english when the Translate Tamil to English at this Audio Transcription, Translation, and Image Generation
 
 
 
 
 
 
2
  import whisper
3
  import gradio as gr
4
  from groq import Groq
5
  from deep_translator import GoogleTranslator
6
- from diffusers import StableDiffusionPipeline
7
- import os
8
  import torch
9
- import openai
10
 
11
 
 
 
 
 
 
12
 
13
- api_key ="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"
 
14
  client = Groq(api_key=api_key)
15
 
16
- model_id1 = "dreamlike-art/dreamlike-diffusion-1.0"
17
- pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True)
18
- pipe = pipe.to("cuda")
19
 
 
 
 
20
 
 
 
 
 
 
21
 
22
- # Updated function for text generation using the new API structure
23
- def generate_creative_text(prompt):
24
- chat_completion = client.chat.completions.create(
25
- messages=[
26
- {"role": "user", "content":prompt}
27
- ],
28
- model="llama-3.2-90b-text-preview"
29
- )
30
- chatbot_response = chat_completion.choices[0].message.content
31
- return chatbot_response
32
 
33
- def process_audio(audio_path, image_option, creative_text_option):
34
- if audio_path is None:
35
- return "Please upload an audio file.", None, None, None
36
 
37
- # Step 1: Transcribe audio
38
- try:
39
- with open(audio_path, "rb") as file:
40
- transcription = client.audio.transcriptions.create(
41
- file=(os.path.basename(audio_path), file.read()),
42
- model="whisper-large-v3",
43
- language="ta",
44
- response_format="verbose_json",
45
- )
46
- tamil_text = transcription.text
47
- except Exception as e:
48
- return f"An error occurred during transcription: {str(e)}", None, None, None
49
 
 
 
 
 
 
50
 
51
- # Step 2: Translate Tamil to English
52
  try:
53
- translator = GoogleTranslator(source='ta', target='en')
54
- translation = translator.translate(tamil_text)
55
  except Exception as e:
56
- return tamil_text, f"An error occurred during translation: {str(e)}", None, None
 
57
 
58
- # Step 3: Generate creative text (if selected)
59
- creative_text = None
60
- if creative_text_option == "Generate Creative Text":
61
- creative_text = generate_creative_text(translation)
62
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
64
- # Step 4: Generate image (if selected)
65
- image = None
66
- if image_option == "Generate Image":
67
  try:
68
- model_id1 = "dreamlike-art/dreamlike-diffusion-1.0"
69
- pipe = StableDiffusionPipeline.from_pretrained(model_id1, torch_dtype=torch.float16, use_safetensors=True)
70
- pipe = pipe.to("cuda")
71
- image = pipe(translation).images[0]
72
  except Exception as e:
73
- return tamil_text, translation, creative_text, f"An error occurred during image generation: {str(e)}"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74
 
75
- return tamil_text, translation, creative_text, image
 
 
 
 
 
 
76
 
77
- # Create Gradio interface
78
- with gr.Blocks(theme=gr.themes.Base()) as iface:
79
- gr.Markdown("# Audio Transcription, Translation, Image & Creative Text Generation")
80
  with gr.Row():
81
- with gr.Column():
82
- audio_input = gr.Audio(type="filepath", label="Upload Audio File")
83
- image_option = gr.Dropdown(["Generate Image", "Skip Image"], label="Image Generation", value="Generate Image")
84
- creative_text_option = gr.Dropdown(["Generate Creative Text", "Skip Creative Text"], label="Creative Text Generation", value="Generate Creative Text")
85
- submit_button = gr.Button("Process Audio")
86
- with gr.Column():
87
- tamil_text_output = gr.Textbox(label="Tamil Transcription")
88
- translation_output = gr.Textbox(label="English Translation")
89
- creative_text_output = gr.Textbox(label="Creative Text")
 
 
 
90
  image_output = gr.Image(label="Generated Image")
91
- submit_button.click(
92
- fn=process_audio,
93
- inputs=[audio_input, image_option, creative_text_option],
94
- outputs=[tamil_text_output, translation_output, creative_text_output, image_output]
95
- )
96
 
97
- # Launch the interface
 
 
 
 
 
 
 
 
98
  iface.launch()
 
1
+ import gradio as gr
2
+ import os
3
+ from deep_translator import GoogleTranslator
4
+ from PIL import Image
5
+ import requests
6
+ import io
7
+ import time
8
  import whisper
9
  import gradio as gr
10
  from groq import Groq
11
  from deep_translator import GoogleTranslator
 
 
12
  import torch
 
13
 
14
 
15
+ # Replace with your actual Hugging Face API details
16
+ os.environ['hf_key']
17
+ key = os.getenv('hf_key')
18
+ API_URL = "https://api-inference.huggingface.co/models/Artples/LAI-ImageGeneration-vSDXL-2"
19
+ headers = {"Authorization": f"Bearer {key}"}
20
 
21
+ os.environ['grog_key']
22
+ api_key = os.getenv('grog_key')
23
  client = Groq(api_key=api_key)
24
 
 
 
 
25
 
26
+ def query_image_generation(payload, max_retries=5):
27
+ for attempt in range(max_retries):
28
+ response = requests.post(API_URL, headers=headers, json=payload)
29
 
30
+ if response.status_code == 503:
31
+ print(f"Model is still loading, retrying... Attempt {attempt + 1}/{max_retries}")
32
+ estimated_time = min(response.json().get("estimated_time", 60), 60)
33
+ time.sleep(estimated_time)
34
+ continue
35
 
36
+ if response.status_code != 200:
37
+ print(f"Error: Received status code {response.status_code}")
38
+ print(f"Response: {response.text}")
39
+ return None
 
 
 
 
 
 
40
 
41
+ return response.content
 
 
42
 
43
+ print(f"Failed to generate image after {max_retries} attempts.")
44
+ return None
 
 
 
 
 
 
 
 
 
 
45
 
46
+ def generate_image(prompt):
47
+ image_bytes = query_image_generation({"inputs": prompt})
48
+
49
+ if image_bytes is None:
50
+ return None
51
 
 
52
  try:
53
+ image = Image.open(io.BytesIO(image_bytes)) # Opening the image from bytes
54
+ return image
55
  except Exception as e:
56
+ print(f"Error: {e}")
57
+ return None
58
 
59
+ def process_audio_or_text(input_text, audio_path, generate_image_flag):
60
+ tamil_text, translation, image = None, None, None
 
 
61
 
62
+ if audio_path: # Prefer audio input
63
+ try:
64
+ with open(audio_path, "rb") as file:
65
+ transcription = client.audio.transcriptions.create(
66
+ file=(os.path.basename(audio_path), file.read()),
67
+ model="whisper-large-v3",
68
+ language="ta",
69
+ response_format="verbose_json",
70
+ )
71
+ tamil_text = transcription.text
72
+ except Exception as e:
73
+ return f"An error occurred during transcription: {str(e)}", None, None
74
 
 
 
 
75
  try:
76
+ translator = GoogleTranslator(source='ta', target='en')
77
+ translation = translator.translate(tamil_text)
 
 
78
  except Exception as e:
79
+ return tamil_text, f"An error occurred during translation: {str(e)}", None
80
+
81
+ elif input_text: # No audio input, so use text input
82
+ translation = input_text
83
+
84
+
85
+ # Generate chatbot response
86
+ try:
87
+ chat_completion = client.chat.completions.create(
88
+ messages=[{"role": "user", "content": translation}],
89
+ model="llama-3.2-90b-text-preview"
90
+ )
91
+ chatbot_response = chat_completion.choices[0].message.content
92
+ except Exception as e:
93
+ return None, f"An error occurred during chatbot interaction: {str(e)}", None
94
 
95
+ if generate_image_flag: # Generate image if the checkbox is checked
96
+ image = generate_image(translation)
97
+
98
+ return tamil_text, chatbot_response, image # Return both chatbot response and image (if generated)
99
+
100
+ with gr.Blocks() as iface:
101
+ gr.Markdown("# AI Chatbot and Image Generation App")
102
 
 
 
 
103
  with gr.Row():
104
+ with gr.Column(scale=1): # Left side (Inputs and Buttons)
105
+ user_input = gr.Textbox(label="Enter Tamil text", placeholder="Type your message here...")
106
+ audio_input = gr.Audio(type="filepath", label=" Or upload audio (for Image Generation)")
107
+ image_generation_checkbox = gr.Checkbox(label="Generate Image", value=False)
108
+
109
+ # Buttons
110
+ submit_btn = gr.Button("Submit")
111
+ clear_btn = gr.Button("Clear")
112
+
113
+ with gr.Column(scale=1): # Right side (Outputs)
114
+ text_output_1 = gr.Textbox(label="Tamil Transcription / Chatbot Response", interactive=False)
115
+ text_output_2 = gr.Textbox(label="English Translation", interactive=False)
116
  image_output = gr.Image(label="Generated Image")
 
 
 
 
 
117
 
118
+ # Connect the buttons to the functions
119
+ submit_btn.click(fn=process_audio_or_text,
120
+ inputs=[user_input, audio_input, image_generation_checkbox],
121
+ outputs=[text_output_1, text_output_2, image_output])
122
+
123
+ clear_btn.click(lambda: ("", None, False, "", "", None),
124
+ inputs=[],
125
+ outputs=[user_input, audio_input, image_generation_checkbox, text_output_1, text_output_2, image_output])
126
+
127
  iface.launch()