ask-youtube-gpt / app.py
wendru18
oopsy daisy :D
b937498
from youtube_transcript_api import YouTubeTranscriptApi
from nltk.tokenize import TextTilingTokenizer
from youtubesearchpython import VideosSearch
from semantic_search import SemanticSearch
import pandas as pd
import gradio as gr
import numpy as np
import requests
import tiktoken
import openai
import json
import nltk
import re
import os
nltk.download('stopwords')
tt = TextTilingTokenizer()
searcher = SemanticSearch()
# Initialize a counter for duplicate titles
title_counter = {}
# One to one mapping from titles to urls
titles_to_urls = {}
def set_openai_key(key):
if key == "env":
key = os.environ.get("OPENAI_API_KEY")
openai.api_key = key
def get_youtube_data(url):
video_id = url.split("=")[1]
try:
raw = YouTubeTranscriptApi.get_transcript(video_id)
except:
try:
transcript_list = YouTubeTranscriptApi.list_transcripts(video_id)
for transcript in transcript_list:
raw = transcript.translate('en').fetch()
break
except:
print(f"No transcript found for {url}") # Usually because the video itself disabled captions
return False
response = requests.get(f"https://noembed.com/embed?dataType=json&url={url}")
data = json.loads(response.content)
title, author = data["title"], data["author_name"]
# ' is a reserved character
title = title.replace("'", "")
author = author.replace("'", "")
df = pd.DataFrame(raw)
df['end'] = df['start'] + df['duration']
df['total_words'] = df['text'].apply(lambda x: len(x.split())).cumsum()
df["text"] = df["text"] + "\n\n"
return df, title, author
def to_timestamp(seconds):
seconds = int(seconds)
hours = seconds // 3600
minutes = (seconds % 3600) // 60
seconds_remaining = seconds % 60
if seconds >= 3600:
return f"{hours:02d}:{minutes:02d}:{seconds_remaining:02d}"
else:
return f"{minutes:02d}:{seconds_remaining:02d}"
def to_seconds(timestamp):
time_list = timestamp.split(':')
total_seconds = 0
if len(time_list) == 2: # Minutes:Seconds format
total_seconds = int(time_list[0]) * 60 + int(time_list[1])
elif len(time_list) == 3: # Hours:Minutes:Seconds format
total_seconds = int(time_list[0]) * 3600 + int(time_list[1]) * 60 + int(time_list[2])
else:
raise ValueError("Invalid timestamp format")
return total_seconds
def get_segments(df, title, author, split_by_topic, segment_length = 200):
transcript = df['text'].str.cat(sep=' ')
if not split_by_topic:
words = transcript.split()
segments = [' '.join(words[i:i+segment_length]) for i in range(0, len(words), segment_length)]
else:
try:
segments = tt.tokenize(transcript)
except:
return ""
segments = [segment.replace('\n','').strip() for segment in segments]
segments_wc = [len(segment.split()) for segment in segments]
segments_wc = np.cumsum(segments_wc)
idx = [np.argmin(np.abs(df['total_words'] - total_words)) for total_words in segments_wc]
segments_end_times = df['end'].iloc[idx].values
segments_end_times = np.insert(segments_end_times, 0, 0.0)
segments_times = [f"({to_timestamp(segments_end_times[i-1])}, {to_timestamp(segments_end_times[i])})" for i in range(1,len(segments_end_times))]
segments_text = [f"Segment from '{title}' by {author}\nTimestamp: {segment_time}\n\n{segment}\n" for segment, segment_time in zip(segments, segments_times)]
return segments_text
def fit_searcher(segments, n_neighbours):
global searcher
searcher.fit(segments, n_neighbors=n_neighbours)
return True
def num_tokens(text, model):
encoding = tiktoken.encoding_for_model(model)
return len(encoding.encode(text))
def refencify(text):
title_pattern = r"Segment from '(.+)'"
timestamp_pattern = r"Timestamp: \((.+)\)"
title = re.search(title_pattern, text).group(1)
timestamp = re.search(timestamp_pattern, text).group(1).split(",")
start_timestamp, end_timestamp = timestamp
url = titles_to_urls[title]
start_seconds = to_seconds(start_timestamp)
end_seconds = to_seconds(end_timestamp)
video_iframe = f'''<iframe
width="400"
height="240"
src="{url.replace("watch?v=", "embed/")}?start={start_seconds}&end={end_seconds}&controls=0"
frameborder="0"
allow="accelerometer; autoplay; modestbranding; encrypted-media; gyroscope; picture-in-picture"
allowfullscreen
>
</iframe>'''
return start_timestamp, end_timestamp, f"{video_iframe}\n\n"
def form_query(question, model, token_budget):
results = searcher(question)
introduction = 'Use the below segments from multiple youtube videos to answer the subsequent question. If the answer cannot be found in the articles, write "I could not find an answer." Cite each sentence using the [title, author, timestamp] notation. Every sentence MUST have a citation!'
message = introduction
question = f"\n\nQuestion: {question}"
references = ""
for i, result in enumerate(results):
result = result + "\n\n"
if (
num_tokens(message + result + question, model=model)
> token_budget
):
break
else:
message += result
start_timestamp, end_timestamp, iframe = refencify(result)
references += f"### Segment {i+1} ({start_timestamp} - {end_timestamp}):\n" + iframe
# Remove the last extra two newlines
message = message[:-2]
references = "Segments that might have been used to answer your question: (If you specified more segments than shown here, consider increasing your token budget)\n\n" + references
return message + question, references
def generate_answer(question, model, token_budget, temperature):
message, references = form_query(question, model, token_budget)
messages = [
{"role": "system", "content": "You answer questions about YouTube videos."},
{"role": "user", "content": message},
]
try:
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature
)
except:
return "An OpenAI error occured. Make sure you did not exceed your usage limit or you provided a valid API key.", ""
response_message = response["choices"][0]["message"]["content"]
return response_message, references
def add_to_dict(title, url):
global title_counter
if title not in titles_to_urls:
# This is the first occurrence of this title
titles_to_urls[title] = url
return title
else:
# This title has already been seen, so we need to add a number suffix to it
# First, check if we've already seen this title before
if title in title_counter:
# If we have, increment the counter
title_counter[title] += 1
else:
# If we haven't, start the counter at 1
title_counter[title] = 1
# Add the suffix to the title
new_title = f"{title} ({title_counter[title]})"
# Add the new title to the dictionary
titles_to_urls[new_title] = url
return new_title
def search_youtube(question, n_videos):
videosSearch = VideosSearch(question, limit = n_videos)
urls = ["https://www.youtube.com/watch?v=" + video["id"] for video in videosSearch.result()["result"]]
print(urls)
return urls
def main(openAI_key, question, n_videos, urls_text, split_by_topic, segment_length, n_neighbours, model, token_budget, temperature):
print(question)
print(urls_text)
set_openai_key(openAI_key)
if urls_text == "":
urls = search_youtube(question, n_videos)
else:
urls = list(set(urls_text.split("\n")))
global titles_to_urls
titles_to_urls = {}
segments = []
for url in urls:
if "youtu.be" in url:
url = url.replace("youtu.be/", "youtube.com/watch?v=")
res = get_youtube_data(url)
if not res:
continue
df, title, author = res
title = add_to_dict(title, url)
video_segments = get_segments(df, title, author, split_by_topic, segment_length)
segments.extend(video_segments)
if segments == []:
return "Something wrong happened! Try specifying the YouTube videos or changing the query.", ""
print("Segments generated successfully!")
if fit_searcher(segments, n_neighbours):
print("Searcher fit successfully!")
answer, references = generate_answer(question, model, token_budget, temperature)
print(answer)
return answer, references
title = "Ask YouTube GPT 📺"
with gr.Blocks() as demo:
gr.Markdown(f'<center><h1>{title}</h1></center>')
gr.Markdown(f'Ask YouTube GPT allows you to ask questions about a set of YouTube Videos using Topic Segmentation, Universal Sentence Encoding, and Open AI. It does not use the video/s itself, but rather the transcript/s of such video/s. The returned response cites the video title, author and timestamp in square brackets where the information is located, adding credibility to the responses and helping you locate incorrect information. If you need one, get your Open AI API key <a href="https://platform.openai.com/account/api-keys">here</a>.</p>\n\n### Latest Update (01/05/23)\n> Specifying the set of YouTube videos has now been made optional. Instead you can simply specify a question and the number of videos to retrieve from YouTube.')
with gr.Row():
with gr.Group():
openAI_key=gr.Textbox(label='Enter your OpenAI API key here:')
question = gr.Textbox(label='Enter your question here:')
with gr.Accordion("Advanced Settings", open=False):
# Allow the user to input multiple links, adding a textbox for each
urls_text = gr.Textbox(lines=5, label="Enter the links to the YouTube videos you want to search (one per line).", info="If left blank, the question will be used to search and retrieve videos from YouTube.", placeholder="https://www.youtube.com/watch?v=...")
n_videos = gr.Slider(label="Number of videos to retrieve", minimum=1, maximum=10, step=1, value=5, info="The number of videos to retrieve and feed to the GPT model for answering the question.")
def fn2(urls_text):
if urls_text != "":
return gr.Slider.update(visible=False)
else:
return gr.Slider.update(visible=True)
urls_text.change(fn2, urls_text, n_videos)
split_by_topic = gr.Checkbox(label="Split segments by topic", value=True, info="Whether the video transcripts are to be segmented by topic or by word count. Topically-coherent segments may be more useful for question answering, but results in a slower response time, especially for lengthy videos.")
segment_length = gr.Slider(label="Segment word count", minimum=50, maximum=500, step=50, value=200, visible=False)
def fn(split_by_topic):
return gr.Slider.update(visible=not split_by_topic)
# If the user wants to split by topic, allow them to set the maximum segment length. (Make segment_length visible)
split_by_topic.change(fn, split_by_topic, segment_length)
n_neighbours = gr.Slider(label="Number of segments to retrieve", minimum=1, maximum=20, step=1, value=5, info="The number of segments to retrieve and feed to the GPT model for answering.")
model = gr.Dropdown(label="Model", value="gpt-3.5-turbo", choices=["gpt-3.5-turbo", "gpt-4"])
token_budget = gr.Slider(label="Prompt token budget", minimum=100, maximum=4000, step=100, value=1000, info="The maximum number of tokens the prompt can take.")
temperature = gr.Slider(label="Temperature", minimum=0, maximum=1, step=0.1, value=0, info="The GPT model's temperature. Recommended to use a low temperature to decrease the likelihood of hallucinations.")
btn = gr.Button(value='Submit')
btn.style(full_width=True)
with gr.Group():
with gr.Tabs():
with gr.TabItem("Answer"):
answer = gr.Markdown()
with gr.TabItem("References"):
references = gr.Markdown()
btn.click(main, inputs=[openAI_key, question, n_videos, urls_text, split_by_topic, segment_length, n_neighbours, model, token_budget, temperature], outputs=[answer, references])
#openai.api_key = os.getenv('Your_Key_Here')
demo.launch()