Spaces:
Running
Running
Commit
·
914749b
unverified
·
0
Parent(s):
initial commit
Browse files- app.py +83 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Initialize the sentiment analysis pipeline globally
|
5 |
+
# This will download and cache the model on the first run.
|
6 |
+
# The default model is 'distilbert-base-uncased-finetuned-sst-2-english'
|
7 |
+
try:
|
8 |
+
sentiment_analyzer = pipeline("sentiment-analysis")
|
9 |
+
except Exception as e:
|
10 |
+
print(f"Error initializing sentiment analysis pipeline: {e}")
|
11 |
+
sentiment_analyzer = None
|
12 |
+
|
13 |
+
def sentiment_analysis(text: str) -> dict:
|
14 |
+
"""
|
15 |
+
Analyze the sentiment of the given text using a Hugging Face transformers model.
|
16 |
+
|
17 |
+
Args:
|
18 |
+
text (str): The text to analyze.
|
19 |
+
|
20 |
+
Returns:
|
21 |
+
dict: A dictionary containing the sentiment assessment.
|
22 |
+
"""
|
23 |
+
if not sentiment_analyzer:
|
24 |
+
return {
|
25 |
+
"assessment": "error",
|
26 |
+
"polarity": 0.0,
|
27 |
+
"details": "Sentiment analyzer not available."
|
28 |
+
}
|
29 |
+
|
30 |
+
# Handle empty or whitespace-only input
|
31 |
+
if not text or not text.strip():
|
32 |
+
return {
|
33 |
+
"assessment": "neutral", # Or specific "empty_input"
|
34 |
+
"polarity": 0.0,
|
35 |
+
"model_score": 0.0,
|
36 |
+
"details": "Input text is empty."
|
37 |
+
}
|
38 |
+
|
39 |
+
try:
|
40 |
+
# The pipeline returns a list of dictionaries, e.g., [{'label': 'POSITIVE', 'score': 0.99}]
|
41 |
+
# We take the first result as we are analyzing the whole text as one segment.
|
42 |
+
result = sentiment_analyzer(text)[0]
|
43 |
+
label = result['label']
|
44 |
+
score = result['score']
|
45 |
+
|
46 |
+
assessment = "neutral" # Default assessment
|
47 |
+
polarity = 0.0
|
48 |
+
|
49 |
+
if label == "POSITIVE":
|
50 |
+
assessment = "positive"
|
51 |
+
polarity = score # Score is confidence, directly maps to positive polarity
|
52 |
+
elif label == "NEGATIVE":
|
53 |
+
assessment = "negative"
|
54 |
+
# To align with a -1 to 1 range like TextBlob, make polarity negative for negative sentiment
|
55 |
+
polarity = -score
|
56 |
+
|
57 |
+
# Note: Subjectivity is not directly provided by this specific transformer model.
|
58 |
+
# We return polarity, assessment, and the raw model score for more detail.
|
59 |
+
return {
|
60 |
+
"polarity": round(polarity, 2),
|
61 |
+
"assessment": assessment,
|
62 |
+
"model_score": round(score, 4)
|
63 |
+
}
|
64 |
+
except Exception as e:
|
65 |
+
print(f"Error during sentiment analysis for text '{text[:50]}...': {e}")
|
66 |
+
return {
|
67 |
+
"assessment": "error",
|
68 |
+
"polarity": 0.0,
|
69 |
+
"details": f"Error processing text: {str(e)}"
|
70 |
+
}
|
71 |
+
|
72 |
+
# Create the Gradio interface
|
73 |
+
demo = gr.Interface(
|
74 |
+
fn=sentiment_analysis,
|
75 |
+
inputs=gr.Textbox(placeholder="Enter text to analyze..."),
|
76 |
+
outputs=gr.JSON(),
|
77 |
+
title="Advanced Text Sentiment Analysis (Transformers)",
|
78 |
+
description="Analyze the sentiment of text using a Hugging Face Transformers model. Provides polarity, assessment, and model score."
|
79 |
+
)
|
80 |
+
|
81 |
+
# Launch the interface and MCP server
|
82 |
+
if __name__ == "__main__":
|
83 |
+
demo.launch(mcp_server=True)
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
textblob
|