File size: 8,545 Bytes
ab9857f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
import os, sys
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True'
import tensorflow.keras.layers as kl
import tensorflow.keras.backend as K
import tensorflow as tf
import numpy as np
from DeepDeformationMapRegistration.utils.operators import soft_threshold
class UncertaintyWeighting(kl.Layer):
def __init__(self, num_loss_fns=1, num_reg_fns=0, loss_fns: list = [tf.keras.losses.mean_squared_error],
reg_fns: list = list(), prior_loss_w=[1.], manual_loss_w=[1.], prior_reg_w=[1.], manual_reg_w=[1.],
**kwargs):
assert isinstance(loss_fns, list) and (num_loss_fns == len(loss_fns) or len(loss_fns) == 1)
assert isinstance(reg_fns, list) and (num_reg_fns == len(reg_fns))
self.num_loss = num_loss_fns
if len(loss_fns) == 1 and self.num_loss > 1:
self.loss_fns = loss_fns * self.num_loss
else:
self.loss_fns = loss_fns
if len(prior_loss_w) == 1:
self.prior_loss_w = prior_loss_w * num_loss_fns
else:
self.prior_loss_w = prior_loss_w
self.prior_loss_w = np.log(self.prior_loss_w)
if len(manual_loss_w) == 1:
self.manual_loss_w = manual_loss_w * num_loss_fns
else:
self.manual_loss_w = manual_loss_w
self.num_reg = num_reg_fns
if self.num_reg != 0:
if len(reg_fns) == 1 and self.num_reg > 1:
self.reg_fns = reg_fns * self.num_reg
else:
self.reg_fns = reg_fns
self.is_placeholder = True
if self.num_reg != 0:
if len(prior_reg_w) == 1:
self.prior_reg_w = prior_reg_w * num_reg_fns
else:
self.prior_reg_w = prior_reg_w
self.prior_reg_w = np.log(self.prior_reg_w)
if len(manual_reg_w) == 1:
self.manual_reg_w = manual_reg_w * num_reg_fns
else:
self.manual_reg_w = manual_reg_w
else:
self.prior_reg_w = list()
self.manual_reg_w = list()
super(UncertaintyWeighting, self).__init__(**kwargs)
def build(self, input_shape=None):
self.log_loss_vars = self.add_weight(name='loss_log_vars', shape=(self.num_loss,),
initializer=tf.keras.initializers.Constant(self.prior_loss_w),
trainable=True)
self.loss_weights = tf.math.softmax(self.log_loss_vars, name='SM_loss_weights')
if self.num_reg != 0:
self.log_reg_vars = self.add_weight(name='loss_reg_vars', shape=(self.num_reg,),
initializer=tf.keras.initializers.Constant(self.prior_reg_w),
trainable=True)
if self.num_reg == 1:
self.reg_weights = tf.math.exp(self.log_reg_vars, name='EXP_reg_weights')
else:
self.reg_weights = tf.math.softmax(self.log_reg_vars, name='SM_reg_weights')
super(UncertaintyWeighting, self).build(input_shape)
def multi_loss(self, ys_true, ys_pred, regs_true, regs_pred):
loss_values = list()
loss_names_loss = list()
loss_names_reg = list()
for y_true, y_pred, loss_fn, man_w in zip(ys_true, ys_pred, self.loss_fns, self.manual_loss_w):
loss_values.append(tf.keras.backend.mean(man_w * loss_fn(y_true, y_pred)))
loss_names_loss.append(loss_fn.__name__)
loss_values = tf.convert_to_tensor(loss_values, dtype=tf.float32, name="step_loss_values")
loss = tf.math.multiply(self.loss_weights, loss_values, name='step_weighted_loss')
if self.num_reg != 0:
loss_reg = list()
for reg_true, reg_pred, reg_fn, man_w in zip(regs_true, regs_pred, self.reg_fns, self.manual_reg_w):
loss_reg.append(K.mean(man_w * reg_fn(reg_true, reg_pred)))
loss_names_reg.append(reg_fn.__name__)
reg_values = tf.convert_to_tensor(loss_reg, dtype=tf.float32, name="step_reg_values")
loss = loss + tf.math.multiply(self.reg_weights, reg_values, name='step_weighted_reg')
for i, loss_name in enumerate(loss_names_loss):
self.add_metric(tf.slice(self.loss_weights, [i], [1]), name='LOSS_WEIGHT_{}_{}'.format(i, loss_name),
aggregation='mean')
self.add_metric(tf.slice(loss_values, [i], [1]), name='LOSS_VALUE_{}_{}'.format(i, loss_name),
aggregation='mean')
if self.num_reg != 0:
for i, loss_name in enumerate(loss_names_reg):
self.add_metric(tf.slice(self.reg_weights, [i], [1]), name='REG_WEIGHT_{}_{}'.format(i, loss_name),
aggregation='mean')
self.add_metric(tf.slice(reg_values, [i], [1]), name='REG_VALUE_{}_{}'.format(i, loss_name),
aggregation='mean')
return K.sum(loss)
def call(self, inputs):
ys_true = inputs[:self.num_loss]
ys_pred = inputs[self.num_loss:self.num_loss*2]
reg_true = inputs[-self.num_reg*2:-self.num_reg]
reg_pred = inputs[-self.num_reg:] # The last terms are the regularization ones which have no GT
loss = self.multi_loss(ys_true, ys_pred, reg_true, reg_pred)
self.add_loss(loss, inputs=inputs)
# We won't actually use the output, but we need something for the TF graph
return K.concatenate(inputs, -1)
def get_config(self):
base_config = super(UncertaintyWeighting, self).get_config()
base_config['num_loss_fns'] = self.num_loss
base_config['num_reg_fns'] = self.num_reg
return base_config
def distance_map(coord1, coord2, dist, img_shape_w_channel=(64, 64, 1)):
max_dist = np.max(img_shape_w_channel)
dm_p = np.ones(img_shape_w_channel, np.float32)*max_dist
dm_n = np.ones(img_shape_w_channel, np.float32)*max_dist
for c1, c2, d in zip(coord1, coord2, dist):
dm_p[c1, c2, 0] = d if dm_p[c1, c2, 0] > d else dm_p[c1, c2]
d_n = 64. - max_dist
dm_n[c1, c2, 0] = d_n if dm_n[c1, c2, 0] > d_n else dm_n[c1, c2]
return dm_p/max_dist, dm_n/max_dist
def volume_to_ov_and_dm(in_volume: tf.Tensor):
# This one is run as a preprocessing step
def get_ov_projections_and_dm(volume):
# tf.sign returns -1, 0, 1 depending on the sign of the elements of the input (negative, zero, positive)
i, j, k, c = tf.where(volume > 0.0)
top = tf.sign(tf.reduce_sum(volume, axis=0), name='ov_top')
right = tf.sign(tf.reduce_sum(volume, axis=1), name='ov_right')
front = tf.sign(tf.reduce_sum(volume, axis=2), name='ov_front')
top_p, top_n = tf.py_func(distance_map, [j, k, i], tf.float32)
right_p, right_n = tf.py_func(distance_map, [i, k, j], tf.float32)
front_p, front_n = tf.py_func(distance_map, [i, j, k], tf.float32)
return [front, right, top], [front_p, front_n, top_p, top_n, right_p, right_n]
if len(in_volume.shape.as_list()) > 4:
return tf.map_fn(get_ov_projections_and_dm, in_volume, [tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32])
else:
return get_ov_projections_and_dm(in_volume)
def ov_and_dm_to_volume(ov_projections):
front, right, top = ov_projections
def get_volume(front: tf.Tensor, right: tf.Tensor, top: tf.Tensor):
front_shape = front.shape.as_list() # Assume (H, W, C)
top_shape = top.shape.as_list()
front_vol = tf.tile(tf.expand_dims(front, 2), [1, 1, top_shape[0], 1])
right_vol = tf.tile(tf.expand_dims(right, 1), [1, front_shape[1], 1, 1])
top_vol = tf.tile(tf.expand_dims(top, 0), [front_shape[0], 1, 1, 1])
sum = tf.add(tf.add(front_vol, right_vol), top_vol)
return soft_threshold(sum, 2., 'get_volume')
if len(front.shape.as_list()) > 3:
return tf.map_fn(lambda x: get_volume(x[0], x[1], x[2]), ov_projections, tf.float32)
else:
return get_volume(front, right, top)
# TODO: Recovering the coordinates from the distance maps to prevent artifacts
# will the gradients be backpropagated??!?!!?!?!
|