File size: 9,435 Bytes
74c6a32
 
 
 
 
 
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from tensorflow.python.keras.optimizers import Optimizer
from tensorflow.python.keras.optimizer_v2.optimizer_v2 import OptimizerV2
from tensorflow.python import ops, math_ops, state_ops, control_flow_ops
from tensorflow.python.keras import backend as K
from tensorflow.python.keras import backend_config
import tensorflow as tf


class AccumOptimizer(Optimizer):
    """Optimizer
    Inheriting Optimizer class, wrapping the original optimizer
    to achieve a new corresponding optimizer of gradient accumulation.
    # Arguments
        optimizer: an instance of keras optimizer (supporting
                    all keras optimizers currently available);
        steps_per_update: the steps of gradient accumulation
    # Returns
        a new keras optimizer.
    """
    def __init__(self, optimizer, steps_per_update=1, **kwargs):
        super(AccumOptimizer, self).__init__(name='AccumOptimizer', **kwargs)
        self.optimizer = optimizer
        with K.name_scope(self.__class__.__name__):
            self.steps_per_update = steps_per_update
            self.iterations = K.variable(0, dtype='int64', name='iterations')
            self.cond = K.equal(self.iterations % self.steps_per_update, 0)
            self.lr = self.optimizer.lr
            self.optimizer.lr = K.switch(self.cond, self.optimizer.lr, 0.)
            for attr in ['momentum', 'rho', 'beta_1', 'beta_2']:
                if hasattr(self.optimizer, attr):
                    value = getattr(self.optimizer, attr)
                    setattr(self, attr, value)
                    setattr(self.optimizer, attr, K.switch(self.cond, value, 1 - 1e-7))
            for attr in self.optimizer.get_config():
                if not hasattr(self, attr):
                    value = getattr(self.optimizer, attr)
                    setattr(self, attr, value)
            # Cover the original get_gradients method with accumulative gradients.
            def get_gradients(loss, params):
                return [ag / self.steps_per_update for ag in self.accum_grads]
            self.optimizer.get_gradients = get_gradients
    def get_updates(self, loss, params):
        self.updates = [
            K.update_add(self.iterations, 1),
            K.update_add(self.optimizer.iterations, K.cast(self.cond, 'int64')),
        ]
        # gradient accumulation
        self.accum_grads = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params]
        grads = self.get_gradients(loss, params)
        for g, ag in zip(grads, self.accum_grads):
            self.updates.append(K.update(ag, K.switch(self.cond, g, ag + g)))
        # inheriting updates of original optimizer
        self.updates.extend(self.optimizer.get_updates(loss, params)[1:])
        self.weights.extend(self.optimizer.weights)
        return self.updates
    def get_config(self):
        iterations = K.eval(self.iterations)
        K.set_value(self.iterations, 0)
        config = self.optimizer.get_config()
        K.set_value(self.iterations, iterations)
        return config


__all__ = ['AdamAccumulated']


# SRC: https://github.com/CyberZHG/keras-gradient-accumulation/blob/master/keras_gradient_accumulation/optimizer_v2.py
class AdamAccumulated(OptimizerV2):
    """Optimizer that implements the Adam algorithm with gradient accumulation."""

    def __init__(self,
                 accumulation_steps,
                 learning_rate=0.001,
                 beta_1=0.9,
                 beta_2=0.999,
                 epsilon=1e-7,
                 amsgrad=False,
                 name='Adam',
                 **kwargs):
        r"""Construct a new Adam optimizer.
        Args:
            accumulation_steps: An integer. Update gradient in every accumulation steps.
            learning_rate: A Tensor or a floating point value.    The learning rate.
            beta_1: A float value or a constant float tensor. The exponential decay
                rate for the 1st moment estimates.
            beta_2: A float value or a constant float tensor. The exponential decay
                rate for the 2nd moment estimates.
            epsilon: A small constant for numerical stability. This epsilon is
                "epsilon hat" in the Kingma and Ba paper (in the formula just before
                Section 2.1), not the epsilon in Algorithm 1 of the paper.
            amsgrad: boolean. Whether to apply AMSGrad variant of this algorithm from
                the paper "On the Convergence of Adam and beyond".
            name: Optional name for the operations created when applying gradients.
                Defaults to "Adam".    @compatibility(eager) When eager execution is
                enabled, `learning_rate`, `beta_1`, `beta_2`, and `epsilon` can each be
                a callable that takes no arguments and returns the actual value to use.
                This can be useful for changing these values across different
                invocations of optimizer functions. @end_compatibility
            **kwargs: keyword arguments. Allowed to be {`clipnorm`, `clipvalue`, `lr`,
                `decay`}. `clipnorm` is clip gradients by norm; `clipvalue` is clip
                gradients by value, `decay` is included for backward compatibility to
                allow time inverse decay of learning rate. `lr` is included for backward
                compatibility, recommended to use `learning_rate` instead.
        """

        super(AdamAccumulated, self).__init__(name, **kwargs)
        self._set_hyper('accumulation_steps', accumulation_steps)
        self._set_hyper('learning_rate', kwargs.get('lr', learning_rate))
        self._set_hyper('decay', self._initial_decay)
        self._set_hyper('beta_1', beta_1)
        self._set_hyper('beta_2', beta_2)
        self.epsilon = epsilon or backend_config.epsilon()
        self.amsgrad = amsgrad

    def _create_slots(self, var_list):
        for var in var_list:
            self.add_slot(var, 'g')
        for var in var_list:
            self.add_slot(var, 'm')
        for var in var_list:
            self.add_slot(var, 'v')
        if self.amsgrad:
            for var in var_list:
                self.add_slot(var, 'vhat')

    def set_weights(self, weights):
        params = self.weights
        num_vars = int((len(params) - 1) / 2)
        if len(weights) == 3 * num_vars + 1:
            weights = weights[:len(params)]
        super(AdamAccumulated, self).set_weights(weights)

    def _resource_apply_dense(self, grad, var):
        var_dtype = var.dtype.base_dtype
        lr_t = self._decayed_lr(var_dtype)
        beta_1_t = self._get_hyper('beta_1', var_dtype)
        beta_2_t = self._get_hyper('beta_2', var_dtype)
        accumulation_steps = self._get_hyper('accumulation_steps', 'int64')
        update_cond = tf.equal((self.iterations + 1) % accumulation_steps, 0)
        sub_step = self.iterations % accumulation_steps + 1
        local_step = math_ops.cast(self.iterations // accumulation_steps + 1, var_dtype)
        beta_1_power = math_ops.pow(beta_1_t, local_step)
        beta_2_power = math_ops.pow(beta_2_t, local_step)
        epsilon_t = ops.convert_to_tensor(self.epsilon, var_dtype)
        lr = (lr_t * math_ops.sqrt(1 - beta_2_power) / (1 - beta_1_power))
        lr = tf.where(update_cond, lr, 0.0)

        g = self.get_slot(var, 'g')
        g_a = grad / math_ops.cast(accumulation_steps, var_dtype)
        g_t = tf.where(tf.equal(sub_step, 1),
                       g_a,
                       g + (g_a - g) / math_ops.cast(sub_step, var_dtype))
        g_t = state_ops.assign(g, g_t, use_locking=self._use_locking)

        m = self.get_slot(var, 'm')
        m_t = tf.where(update_cond, m * beta_1_t + g_t * (1 - beta_1_t), m)
        m_t = state_ops.assign(m, m_t, use_locking=self._use_locking)

        v = self.get_slot(var, 'v')
        v_t = tf.where(update_cond, v * beta_2_t + (g_t * g_t) * (1 - beta_2_t), v)
        v_t = state_ops.assign(v, v_t, use_locking=self._use_locking)

        if not self.amsgrad:
            v_sqrt = math_ops.sqrt(v_t)
            var_update = state_ops.assign_sub(
                    var, lr * m_t / (v_sqrt + epsilon_t), use_locking=self._use_locking)
            return control_flow_ops.group(*[var_update, m_t, v_t])
        else:
            v_hat = self.get_slot(var, 'vhat')
            v_hat_t = tf.where(update_cond, math_ops.maximum(v_hat, v_t), v_hat)
            with ops.control_dependencies([v_hat_t]):
                v_hat_t = state_ops.assign(
                        v_hat, v_hat_t, use_locking=self._use_locking)
            v_hat_sqrt = math_ops.sqrt(v_hat_t)
            var_update = state_ops.assign_sub(
                    var,
                    lr * m_t / (v_hat_sqrt + epsilon_t),
                    use_locking=self._use_locking)
            return control_flow_ops.group(*[var_update, m_t, v_t, v_hat_t])

    def get_config(self):
        config = super(AdamAccumulated, self).get_config()
        config.update({
            'accumulation_steps': self._serialize_hyperparameter('accumulation_steps'),
            'learning_rate': self._serialize_hyperparameter('learning_rate'),
            'decay': self._serialize_hyperparameter('decay'),
            'beta_1': self._serialize_hyperparameter('beta_1'),
            'beta_2': self._serialize_hyperparameter('beta_2'),
            'epsilon': self.epsilon,
            'amsgrad': self.amsgrad,
        })
        return config