File size: 7,094 Bytes
476daa5 a27d55f 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os, sys
import shutil
import matplotlib.pyplot as plt
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
import tensorflow as tf
# tf.enable_eager_execution(config=config)
import numpy as np
import h5py
import ddmr.utils.constants as C
from ddmr.utils.nifti_utils import save_nifti
from ddmr.layers import AugmentationLayer
from ddmr.utils.visualization import save_disp_map_img, plot_predictions
from ddmr.utils.misc import DisplacementMapInterpolator
from tqdm import tqdm
from Brain_study.data_generator import BatchGenerator
from Brain_study.Build_test_set import get_mov_centroids
from skimage.measure import regionprops
from scipy.interpolate import griddata
import argparse
DATASET = '/mnt/EncryptedData1/Users/javier/ext_datasets/COMET_dataset/OSLO_COMET_CT/Formatted_128x128x128/test'
POINTS = None
MISSING_CENTROID = np.asarray([[np.nan]*3])
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dir', type=str, help='Directory where to store the files', default='')
parser.add_argument('--reldir', type=str, help='Relative path to dataset, in where to store the files', default='')
parser.add_argument('--gpu', type=int, help='GPU', default=0)
parser.add_argument('--dataset', type=str, help='Dataset to build the test set', default='')
parser.add_argument('--erase', type=bool, help='Erase the content of the output folder', default=False)
parser.add_argument('--output_shape', help='If an int, a cubic shape is presumed. Otherwise provide it as a space separated sequence', nargs='+', default=128)
args = parser.parse_args()
assert args.dataset != '', "Missing original dataset dataset"
if args.dir == '' and args.reldir != '':
OUTPUT_FOLDER_DIR = os.path.join(args.dataset, 'test_dataset')
elif args.dir != '' and args.reldir == '':
OUTPUT_FOLDER_DIR = args.dir
else:
raise ValueError("Either provide 'dir' or 'reldir'")
if args.erase:
shutil.rmtree(OUTPUT_FOLDER_DIR, ignore_errors=True)
os.makedirs(OUTPUT_FOLDER_DIR, exist_ok=True)
print('DESTINATION FOLDER: ', OUTPUT_FOLDER_DIR)
DATASET = args.dataset
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
data_generator = BatchGenerator(DATASET, 1, False, 1.0, False, [0, 1, 2], return_isotropic_shape=True)
img_generator = data_generator.get_train_generator()
nb_labels = len(img_generator.get_segmentation_labels())
image_input_shape = img_generator.get_data_shape()[-1][:-1]
if isinstance(args.output_shape, int):
image_output_shape = [args.output_shape] * 3
elif isinstance(args.output_shape, list):
assert len(args.output_shape) == 3, 'Invalid output shape, expected three values and got {}'.format(len(args.output_shape))
image_output_shape = [int(s) for s in args.output_shape]
else:
raise ValueError('Invalid output_shape. Must be an int or a space-separated sequence of ints')
print('Scaling to: ', image_output_shape)
# Build model
xx = np.linspace(0, image_output_shape[0], image_output_shape[0], endpoint=False)
yy = np.linspace(0, image_output_shape[1], image_output_shape[2], endpoint=False)
zz = np.linspace(0, image_output_shape[2], image_output_shape[1], endpoint=False)
xx, yy, zz = np.meshgrid(xx, yy, zz)
POINTS = np.stack([xx.flatten(), yy.flatten(), zz.flatten()], axis=0).T
input_augm = tf.keras.Input(shape=img_generator.get_data_shape()[0], name='input_augm')
augm_layer = AugmentationLayer(max_displacement=C.MAX_AUG_DISP, # Max 30 mm in isotropic space
max_deformation=C.MAX_AUG_DEF, # Max 6 mm in isotropic space
max_rotation=C.MAX_AUG_ANGLE, # Max 10 deg in isotropic space
num_control_points=C.NUM_CONTROL_PTS_AUG,
num_augmentations=C.NUM_AUGMENTATIONS,
gamma_augmentation=C.GAMMA_AUGMENTATION,
brightness_augmentation=C.BRIGHTNESS_AUGMENTATION,
in_img_shape=image_input_shape,
out_img_shape=image_output_shape,
only_image=False,
only_resize=False,
trainable=False,
return_displacement_map=True)
augm_model = tf.keras.Model(inputs=input_augm, outputs=augm_layer(input_augm))
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
config.gpu_options.allow_growth = True
config.log_device_placement = False ## to log device placement (on which device the operation ran)
dm_interp = DisplacementMapInterpolator(image_output_shape, 'griddata', step=8)
sess = tf.Session(config=config)
tf.keras.backend.set_session(sess)
with sess.as_default():
sess.run(tf.global_variables_initializer())
progress_bar = tqdm(enumerate(img_generator, 1), desc='Generating samples', total=len(img_generator))
for step, (in_batch, _, isotropic_shape) in progress_bar:
fix_img, mov_img, fix_seg, mov_seg, disp_map = augm_model.predict(in_batch)
fix_centroids, mov_centroids, disp_centroids = get_mov_centroids(fix_seg, disp_map, nb_labels, False, dm_interp=dm_interp)
out_file = os.path.join(OUTPUT_FOLDER_DIR, 'test_sample_{:04d}.h5'.format(step))
out_file_dm = os.path.join(OUTPUT_FOLDER_DIR, 'test_sample_dm_{:04d}.h5'.format(step))
img_shape = fix_img.shape
segm_shape = fix_seg.shape
disp_shape = disp_map.shape
centroids_shape = fix_centroids.shape
with h5py.File(out_file, 'w') as f:
f.create_dataset('fix_image', shape=img_shape[1:], dtype=np.float32, data=fix_img[0, ...])
f.create_dataset('mov_image', shape=img_shape[1:], dtype=np.float32, data=mov_img[0, ...])
f.create_dataset('fix_segmentations', shape=segm_shape[1:], dtype=np.uint8, data=fix_seg[0, ...])
f.create_dataset('mov_segmentations', shape=segm_shape[1:], dtype=np.uint8, data=mov_seg[0, ...])
f.create_dataset('fix_centroids', shape=centroids_shape, dtype=np.float32, data=fix_centroids)
f.create_dataset('mov_centroids', shape=centroids_shape, dtype=np.float32, data=mov_centroids)
f.create_dataset('isotropic_shape', data=np.squeeze(isotropic_shape))
with h5py.File(out_file_dm, 'w') as f:
f.create_dataset('disp_map', shape=disp_shape[1:], dtype=np.float32, data=disp_map)
f.create_dataset('disp_centroids', shape=centroids_shape, dtype=np.float32, data=disp_centroids)
print('Done')
|