File size: 22,249 Bytes
ed5ac4a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
import os, sys
os.environ['CUDA_DEVICE_ORDER'] = "PCI_BUS_ID"
os.environ['CUDA_VISIBLE_DEVICES'] = "1" # Check availability before running using 'nvidia-smi'
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)
import multiprocessing as mp
mp.set_start_method('spawn')
import tensorflow as tf
# tf.enable_eager_execution()
import numpy as np
import nibabel as nib
from skimage.transform import resize
from skimage.filters import median
from scipy.ndimage import binary_dilation, generate_binary_structure
from nilearn.image import math_img
import h5py
from tqdm import tqdm
import re
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
from DeepDeformationMapRegistration.utils.cmd_args_parser import parse_arguments
import DeepDeformationMapRegistration.utils.constants as const
from tools.thinPlateSplines_tf import ThinPlateSplines
from keras_model.ext.neuron.layers import SpatialTransformer
from tools.voxelMorph import interpn
from generate_dataset.utils import plot_central_slices, plot_def_map, single_img_gif, two_img_gif, plot_slices, \
crop_images, plot_displacement_map, bbox_3D
from generate_dataset import utils
from tools.misc import try_mkdir
from generate_dataset.utils import unzip_file, delete_temp
DATASTE_RAW_FILES = '/mnt/EncryptedData1/Users/javier/vessel_registration/3Dirca/nifti'
LITS_SEGMENTATION_FILE = 'segmentations'
LITS_CT_FILE = 'volume'
IMG_SIZE_LARGE = const.IMG_SHAPE[:-1]
IMG_SIZE_LARGE_x2 = [2 * x for x in const.IMG_SHAPE[:-1]]
FINE_GRID_SHAPE = tuple(x // 1 for x in IMG_SIZE_LARGE_x2) # tuple(np.asarray(IMG_SIZE_LARGE) // 10)
CTRL_GRID = const.CoordinatesGrid()
CTRL_GRID.set_coords_grid(IMG_SIZE_LARGE_x2, [const.TPS_NUM_CTRL_PTS_PER_AXIS, const.TPS_NUM_CTRL_PTS_PER_AXIS,
const.TPS_NUM_CTRL_PTS_PER_AXIS], batches=False, norm=False,
img_type=tf.float32)
FULL_FINE_GRID = const.CoordinatesGrid()
FULL_FINE_GRID.set_coords_grid(IMG_SIZE_LARGE_x2, FINE_GRID_SHAPE, batches=False, norm=False)
OFFSET_NAME_NUM = 0
TH_BIN = 0.50
DILATION_STRUCT = generate_binary_structure(3, 1)
LARGE_PT_DIM = CTRL_GRID.shape_grid_flat + np.asarray([9, 0])
SINGLE_PT_DIM = CTRL_GRID.shape_grid_flat + np.asarray([1, 0])
USE_LARGE_PT = False
ADD_AFFINE_TRF = False
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
config.gpu_options.allow_growth = True
config.log_device_placement = False ## to log device placement (on which device the operation ran)
def tf_graph_translation():
# Place holders
fix_img = tf.placeholder(tf.float32, IMG_SIZE_LARGE_x2, 'fix_img')
fix_tumors = tf.placeholder(tf.float32, IMG_SIZE_LARGE_x2, 'fix_tumors')
fix_parenchyma = tf.placeholder(tf.float32, IMG_SIZE_LARGE_x2, 'fix_parenchyma')
# Apply Affine translation
w = tf.constant(np.random.uniform(-1, 1, 3) * const.MAX_DISP_DM_PERC * IMG_SIZE_LARGE_x2[0], dtype=tf.float32)
pad = tf.cast(tf.abs(w) + 1., tf.int32)
padding = tf.stack([pad, pad], 1)
## PURE TRANSLATION
# Shift the target grid 'w' units
#control_grid = tf.identity(CTRL_GRID.grid_flat())
#trg_grid = tf.add(control_grid, w)
#tps = ThinPlateSplines(control_grid, trg_grid)
#def_grid = tps.interpolate(FULL_FINE_GRID.grid_flat())
## PURE TRANSLATION
def_grid = tf.add(FULL_FINE_GRID.grid_flat(), w)
disp_map = def_grid - FULL_FINE_GRID.grid_flat()
disp_map = tf.reshape(disp_map, (*FINE_GRID_SHAPE, -1))
# disp_map = interpn(disp_map, FULL_FINE_GRID.grid)
# add the batch and channel dimensions
fix_img = tf.pad(fix_img, padding, "CONSTANT", constant_values=0.)
fix_tumors = tf.pad(fix_tumors, padding, "CONSTANT", constant_values=0.)
fix_parenchyma = tf.pad(fix_parenchyma, padding, "CONSTANT", constant_values=0.)
sampl_grid = tf.add(def_grid, tf.cast(pad, def_grid.dtype)) # Because of the padding, the sampling points are now translated 'pad' units
fix_img = tf.expand_dims(fix_img, -1)
fix_tumors = tf.expand_dims(fix_tumors, -1)
fix_parenchyma = tf.expand_dims(fix_parenchyma, -1)
mov_img = interpn(fix_img, sampl_grid, interp_method='linear')
mov_img = tf.squeeze(tf.reshape(mov_img, IMG_SIZE_LARGE_x2))
mov_tumors = interpn(fix_tumors, sampl_grid, interp_method='linear')
mov_tumors = tf.squeeze(tf.reshape(mov_tumors, IMG_SIZE_LARGE_x2))
mov_parenchyma = interpn(fix_parenchyma, sampl_grid, interp_method='linear')
mov_parenchyma = tf.squeeze(tf.reshape(mov_parenchyma, IMG_SIZE_LARGE_x2))
disp_map = tf.cast(disp_map, tf.float32)
return mov_img, mov_parenchyma, mov_tumors, disp_map, w # , w, trg_grid, def_grid
def build_affine_trf(img_size, alpha, beta, gamma, ti, tj, tk):
img_centre = tf.expand_dims(tf.divide(img_size, 2.), -1)
# Rotation matrix around the image centre
# R* = T(p) R(ang) T(-p)
# tf.cos and tf.sin expect radians
zero = tf.zeros((1,))
one = tf.ones((1,))
R = tf.convert_to_tensor([[tf.math.cos(gamma) * tf.math.cos(beta),
tf.math.cos(gamma) * tf.math.sin(beta) * tf.math.sin(alpha) - tf.math.sin(gamma) * tf.math.cos(alpha),
tf.math.cos(gamma) * tf.math.sin(beta) * tf.math.cos(alpha) + tf.math.sin(gamma) * tf.math.sin(alpha),
zero],
[tf.math.sin(gamma) * tf.math.cos(beta),
tf.math.sin(gamma) * tf.math.sin(beta) * tf.math.sin(gamma) + tf.math.cos(gamma) * tf.math.cos(alpha),
tf.math.sin(gamma) * tf.math.sin(beta) * tf.math.cos(gamma) - tf.math.cos(gamma) * tf.math.sin(gamma),
zero],
[-tf.math.sin(beta),
tf.math.cos(beta) * tf.math.sin(alpha),
tf.math.cos(beta) * tf.math.cos(alpha),
zero],
[zero, zero, zero, one]], tf.float32)
R = tf.squeeze(R)
Tc = tf.convert_to_tensor([[one, zero, zero, img_centre[0]],
[zero, one, zero, img_centre[1]],
[zero, zero, one, img_centre[2]],
[zero, zero, zero, one]], tf.float32)
Tc = tf.squeeze(Tc)
Tc_ = tf.convert_to_tensor([[one, zero, zero, -img_centre[0]],
[zero, one, zero, -img_centre[1]],
[zero, zero, one, -img_centre[2]],
[zero, zero, zero, one]], tf.float32)
Tc_ = tf.squeeze(Tc_)
T = tf.convert_to_tensor([[one, zero, zero, ti],
[zero, one, zero, tj],
[zero, zero, one, tk],
[zero, zero, zero, one]], tf.float32)
T = tf.squeeze(T)
return tf.matmul(T, tf.matmul(Tc, tf.matmul(R, Tc_)))
def transform_points(points: tf.Tensor):
alpha = tf.random.uniform((1,), -const.MAX_ANGLE_RAD, const.MAX_ANGLE_RAD)
beta = tf.random.uniform((1,), -const.MAX_ANGLE_RAD, const.MAX_ANGLE_RAD)
gamma = tf.random.uniform((1,), -const.MAX_ANGLE_RAD, const.MAX_ANGLE_RAD)
ti = tf.constant(np.random.uniform(-1, 1, 1) * const.MAX_DISP_DM / 2, dtype=tf.float32)
tj = tf.constant(np.random.uniform(-1, 1, 1) * const.MAX_DISP_DM / 2, dtype=tf.float32)
tk = tf.constant(np.random.uniform(-1, 1, 1) * const.MAX_DISP_DM / 2, dtype=tf.float32)
M = build_affine_trf(tf.convert_to_tensor(IMG_SIZE_LARGE_x2, tf.float32), alpha, beta, gamma, ti, tj, tk)
if points.shape.as_list()[-1] == 3:
points = tf.transpose(points)
new_pts = tf.matmul(M[:3, :3], points)
new_pts = tf.expand_dims(M[:3, -1], -1) + new_pts
return tf.transpose(new_pts), M # Remove the last row of ones
def tf_graph_deform():
# Place holders
fix_img = tf.placeholder(tf.float32, IMG_SIZE_LARGE_x2, 'fix_img')
fix_tumors = tf.placeholder(tf.float32, IMG_SIZE_LARGE_x2, 'fix_tumors')
fix_vessels = tf.placeholder(tf.float32, IMG_SIZE_LARGE_x2, 'fix_vessels')
fix_parenchyma = tf.placeholder(tf.float32, IMG_SIZE_LARGE_x2, 'fix_parenchyma')
large_point = tf.placeholder_with_default(input=tf.constant(False, tf.bool), shape=(), name='large_point')
add_affine = tf.placeholder_with_default(input=tf.constant(False, tf.bool), shape=(), name='add_affine')
search_voxels = tf.cond(tf.equal(tf.reduce_sum(fix_tumors), 0.0),
lambda: fix_parenchyma,
lambda: fix_tumors)
# Apply TPS deformation
# 1. get a point in the label img and add it to the control grid and target grid
idx_points_in_label = tf.where(tf.greater(search_voxels, 0.0)) # Indices of the points in the label image with intensity greater than 0
random_idx = tf.random.uniform([], minval=0, maxval=tf.shape(idx_points_in_label)[0],
dtype=tf.int32) # Randomly select one of the points
disp_location = tf.gather_nd(idx_points_in_label, tf.expand_dims(random_idx, 0)) # And get the coordinates
disp_location = tf.cast(disp_location, tf.float32)
# Get the coordinates of the control point displaces
rand_disp = tf.constant(np.random.uniform(-1, 1, 3) * const.MAX_DISP_DM, dtype=tf.float32)
warped_location = disp_location + rand_disp
def get_box_neighbours(location, radius=3):
n1 = tf.add(rand_disp, tf.constant(np.asarray([radius, radius, radius]), location.dtype))
n2 = tf.add(rand_disp, tf.constant(np.asarray([-radius, radius, radius]), location.dtype))
n3 = tf.add(rand_disp, tf.constant(np.asarray([radius, -radius, radius]), location.dtype))
n4 = tf.add(rand_disp, tf.constant(np.asarray([-radius, -radius, radius]), location.dtype))
n5 = tf.add(rand_disp, tf.constant(np.asarray([radius, radius, -radius]), location.dtype))
n6 = tf.add(rand_disp, tf.constant(np.asarray([-radius, radius, -radius]), location.dtype))
n7 = tf.add(rand_disp, tf.constant(np.asarray([radius, -radius, -radius]), location.dtype))
n8 = tf.add(rand_disp, tf.constant(np.asarray([-radius, -radius, -radius]), location.dtype))
return tf.stack([location, n1, n2, n3, n4, n5, n6, n7, n8], 0)
disp_location, warped_location = tf.cond(large_point,
lambda: (get_box_neighbours(disp_location, 3), get_box_neighbours(warped_location, 3)),
lambda: (tf.expand_dims(rand_disp, 0), tf.expand_dims(warped_location, 0)))
# 2. Add the new point to the control grid and the target grid
control_grid = tf.concat([CTRL_GRID.grid_flat(), disp_location], axis=0)
trg_grid = tf.concat([CTRL_GRID.grid_flat(), warped_location], axis=0)
trg_grid, aff = tf.cond(add_affine,
lambda: transform_points(trg_grid),
lambda: (trg_grid, tf.eye(4, 4)))
# I need to know the shape before running TPS
control_grid.set_shape([73, 3] if USE_LARGE_PT else [65, 3])
trg_grid.set_shape([73, 3] if USE_LARGE_PT else [65, 3])
tps = ThinPlateSplines(control_grid, trg_grid)
def_grid = tps.interpolate(FULL_FINE_GRID.grid_flat())
disp_map = def_grid - FULL_FINE_GRID.grid_flat()
disp_map = tf.reshape(disp_map, (*FINE_GRID_SHAPE, -1))
# disp_map = interpn(disp_map, FULL_FINE_GRID.grid)
# add the batch and channel dimensions
fix_img = tf.expand_dims(tf.expand_dims(fix_img, -1), 0)
fix_tumors = tf.expand_dims(tf.expand_dims(fix_tumors, -1), 0)
fix_vessels = tf.expand_dims(tf.expand_dims(fix_vessels, -1), 0)
fix_parenchyma = tf.expand_dims(tf.expand_dims(fix_parenchyma, -1), 0)
disp_map = tf.cast(tf.expand_dims(disp_map, 0), tf.float32)
mov_tumors = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([fix_tumors, disp_map])
mov_vessels = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([fix_vessels, disp_map])
mov_parenchyma = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([fix_parenchyma, disp_map])
mov_img = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([fix_img, disp_map])
return tf.squeeze(mov_img),\
tf.squeeze(mov_parenchyma),\
tf.squeeze(mov_tumors),\
tf.squeeze(mov_vessels),\
tf.squeeze(disp_map),\
disp_location,\
rand_disp,\
aff #, w, trg_grid, def_grid
if __name__ == '__main__':
parse_arguments(sys.argv[1:])
volume_list = [os.path.join(DATASTE_RAW_FILES, f) for f in os.listdir(DATASTE_RAW_FILES) if f.startswith(LITS_CT_FILE)]
volume_list.sort()
segmentation_list = [os.path.join(DATASTE_RAW_FILES, f) for f in os.listdir(DATASTE_RAW_FILES) if
f.startswith(LITS_SEGMENTATION_FILE)]
segmentation_list.sort()
file_path_pairs = [[v, s] for v, s in zip(volume_list, segmentation_list)]
print('Generating HD5 files at {} ...', format(const.DESTINATION_FOLDER))
# with Pool(10) as p, tf.Session(config=config) as sess:
# tqdm(p.map(generate_training_sample, file_path_pairs))
intensity_window_w = 350
intensity_window_l = 40
intensity_clipping_range = intensity_window_l + np.asarray([-intensity_window_w // 2, intensity_window_w // 2],
np.int) # Slicer range for abdominal CT
try_mkdir(const.DESTINATION_FOLDER)
print('PART 1: Deformation')
# Then do the fancy stuff
init = tf.initialize_all_variables()
get_mov_img = tf_graph_deform()
sess = tf.Session(config=config)
with sess.as_default():
sess.run(init)
sess.graph.finalize()
for img_path, labels_path in tqdm(file_path_pairs):
if img_path is not None and labels_path is not None:
#img_path = unzip_file(img_path)
#labels_path = unzip_file(labels_path)
fix_img = nib.load(img_path) # By convention, nibabel world axes are always in RAS+ orientation
img_header = fix_img.header
fix_labels = nib.load(labels_path)
fix_img = np.asarray(fix_img.dataobj)
fix_labels = np.asarray(fix_labels.dataobj)
if fix_labels.shape[-1] < 4:
print('[INF] ' + img_path + ' has no tumor segmentations')
continue
# fix_artery = fix_labels[..., 0]
fix_vessels = fix_labels[..., 1]
fix_parenchyma = fix_labels[..., 2]
fix_tumors = fix_labels[..., 3]
# Clip intensity values
fix_img = utils.intesity_clipping(fix_img, intensity_clipping_range, augment=True)
# Reshape
fix_img = resize(fix_img, IMG_SIZE_LARGE_x2)
fix_parenchyma = resize(fix_parenchyma, IMG_SIZE_LARGE_x2)
fix_tumors = resize(fix_tumors, IMG_SIZE_LARGE_x2)
fix_vessels = resize(fix_vessels, IMG_SIZE_LARGE_x2)
fix_parenchyma = median(fix_parenchyma, np.ones((5, 5, 5)))
# Compute deformation
mov_img, mov_parenchyma, mov_tumors, mov_vessels, disp_map, disp_loc, disp_vec, aff = sess.run(get_mov_img,
feed_dict={
'fix_img:0': fix_img,
'fix_tumors:0': fix_tumors,
'fix_vessels:0': fix_vessels,
'fix_parenchyma:0': fix_parenchyma,
'large_point:0': USE_LARGE_PT,
'add_affine:0': ADD_AFFINE_TRF})
# Cleaning
mov_img = utils.intesity_clipping(mov_img, intensity_clipping_range)
if USE_LARGE_PT:
disp_loc = disp_loc[0, ...]
# Define the bbox around the union of the parenchyma of both volumes, so none falls outside
bbox_mask = np.sign(mov_parenchyma + fix_parenchyma)
bbox_mask = binary_dilation(bbox_mask, DILATION_STRUCT)
bbox_mask = binary_dilation(bbox_mask, DILATION_STRUCT).astype(np.float32)
# The point of application is referred to the whole image coordinate, not to the local BB
min_i, _, min_j, _, min_k, _ = bbox_3D(bbox_mask)
disp_loc = (disp_loc - np.asarray([min_i, min_j, min_k])) / 2
# Crop the image to only contain the liver
# The origin moved according to the mask information. And the images will be resized in a factor of 2!!
fix_img, _ = crop_images(fix_img, bbox_mask, IMG_SIZE_LARGE)
fix_tumors, _ = crop_images(fix_tumors, bbox_mask, IMG_SIZE_LARGE)
fix_vessels, _ = crop_images(fix_vessels, bbox_mask, IMG_SIZE_LARGE)
disp_map, _ = crop_images(disp_map, bbox_mask, IMG_SIZE_LARGE)
fix_parenchyma, _ = crop_images(fix_parenchyma, bbox_mask, IMG_SIZE_LARGE)
# We will later crop even further, so we don't want to downsample too much
# Crop the image to only contain the liver
mov_img, _ = crop_images(mov_img, bbox_mask, IMG_SIZE_LARGE)
mov_tumors, _ = crop_images(mov_tumors, bbox_mask, IMG_SIZE_LARGE)
mov_vessels, _ = crop_images(mov_vessels, bbox_mask, IMG_SIZE_LARGE)
mov_parenchyma, _ = crop_images(mov_parenchyma, bbox_mask, IMG_SIZE_LARGE)
# Just to be sure we have binary masks
fix_tumors[fix_tumors > TH_BIN] = 1.0
fix_tumors[fix_tumors < 1.0] = 0.0
fix_vessels[fix_vessels > TH_BIN] = 1.0
fix_vessels[fix_vessels < 1.0] = 0.0
fix_parenchyma[fix_parenchyma > TH_BIN] = 1.0
fix_parenchyma[fix_parenchyma < 1.0] = 0.0
mov_tumors[mov_tumors > TH_BIN] = 1.0
mov_tumors[mov_tumors < 1.0] = 0.0
mov_vessels[mov_vessels > TH_BIN] = 1.0
mov_vessels[mov_vessels < 1.0] = 0.0
mov_parenchyma[mov_parenchyma > TH_BIN] = 1.0
mov_parenchyma[mov_parenchyma < 1.0] = 0.0
# Save everything
fix_img = np.expand_dims(fix_img, -1)
fix_tumors = np.expand_dims(fix_tumors, -1)
fix_vessels = np.expand_dims(fix_vessels, -1)
fix_parenchyma = np.expand_dims(fix_parenchyma, -1)
fix_segmentations = np.stack([fix_parenchyma, fix_vessels, fix_tumors], -1)
mov_img = np.expand_dims(mov_img, -1)
mov_tumors = np.expand_dims(mov_tumors, -1)
mov_vessels = np.expand_dims(mov_vessels, -1)
mov_parenchyma = np.expand_dims(mov_parenchyma, -1)
# Save everything
file_name = os.path.split(img_path)[-1].split('.')[0]
vol_num = int(re.split('-|_', file_name)[-1])
hd5_filename = 'volume-{:04d}'.format(vol_num + OFFSET_NAME_NUM)
hd5_filename = os.path.join(const.DESTINATION_FOLDER, hd5_filename + '.hd5')
hd5_file = h5py.File(hd5_filename, 'w')
hd5_file.create_dataset(const.H5_FIX_IMG, data=fix_img, dtype='float32')
hd5_file.create_dataset(const.H5_FIX_PARENCHYMA_MASK, data=fix_parenchyma, dtype='float32')
hd5_file.create_dataset(const.H5_FIX_VESSELS_MASK, data=fix_vessels, dtype='float32')
hd5_file.create_dataset(const.H5_FIX_TUMORS_MASK, data=fix_tumors, dtype='float32')
hd5_file.create_dataset(const.H5_FIX_SEGMENTATIONS, data=fix_segmentations, dtype='float32')
hd5_file.create_dataset(const.H5_PARAMS_INTENSITY_RANGE, (2,), data=intensity_clipping_range,
dtype='float32')
hd5_file.create_dataset(const.H5_MOV_IMG, const.IMG_SHAPE, data=mov_img, dtype='float32')
hd5_file.create_dataset(const.H5_MOV_PARENCHYMA_MASK, const.IMG_SHAPE, data=mov_parenchyma,
dtype='float32')
hd5_file.create_dataset(const.H5_MOV_VESSELS_MASK, const.IMG_SHAPE, data=mov_vessels, dtype='float32')
hd5_file.create_dataset(const.H5_MOV_TUMORS_MASK, const.IMG_SHAPE, data=mov_tumors, dtype='float32')
hd5_file.create_dataset(const.H5_MOV_SEGMENTATIONS, data=fix_segmentations, dtype='float32')
hd5_file.create_dataset(const.H5_GT_DISP, const.DISP_MAP_SHAPE, data=disp_map, dtype='float32')
hd5_file.create_dataset(const.H5_GT_DISP_VECT_LOC, data=disp_loc, dtype='float32')
hd5_file.create_dataset(const.H5_GT_DISP_VECT, data=disp_vec, dtype='float32')
hd5_file.create_dataset(const.H5_GT_AFFINE_M, data=aff, dtype='float32')
hd5_file.create_dataset('params/voxel_size', data=img_header.get_zooms()[:3])
hd5_file.create_dataset('params/original_shape', data=img_header.get_data_shape())
hd5_file.create_dataset('params/bbox_origin', data=[min_i, min_j, min_k])
hd5_file.create_dataset('params/first_reshape', data=IMG_SIZE_LARGE_x2)
# delete_temp(img_path)
# delete_temp(labels_path)
hd5_file.close()
sess.close()
print('...Done generating HD5 files')
|