File size: 6,395 Bytes
ab9857f
 
74c6a32
 
 
 
 
 
 
ab9857f
74c6a32
 
ab9857f
 
 
74c6a32
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import errno
import shutil
import numpy as np
from scipy.interpolate import griddata, Rbf, LinearNDInterpolator, NearestNDInterpolator
from skimage.measure import regionprops
from DeepDeformationMapRegistration.layers.b_splines import interpolate_spline
from DeepDeformationMapRegistration.utils.thin_plate_splines import ThinPlateSplines
from tensorflow import squeeze


def try_mkdir(dir, verbose=True):
    try:
        os.makedirs(dir)
    except OSError as err:
        if err.errno == errno.EEXIST and verbose:
            print("Directory " + dir + " already exists")
        else:
            raise ValueError("Can't create dir " + dir)
    else:
        print("Created directory " + dir)


def function_decorator(new_name):
    """"
    Change the __name__ property of a function using new_name.
    :param new_name:
    :return:
    """
    def decorator(func):
        func.__name__ = new_name
        return func
    return decorator


class DatasetCopy:
    def __init__(self, dataset_location, copy_location=None, verbose=True):
        self.__copy_loc = os.path.join(os.getcwd(), 'temp_dataset') if copy_location is None else copy_location
        self.__dst_loc = dataset_location
        self.__verbose = verbose

    def copy_dataset(self):
        shutil.copytree(self.__dst_loc, self.__copy_loc)
        if self.__verbose:
            print('{} copied to {}'.format(self.__dst_loc, self.__copy_loc))
        return self.__copy_loc

    def delete_temp(self):
        shutil.rmtree(self.__copy_loc)
        if self.__verbose:
            print('Deleted: ', self.__copy_loc)


class DisplacementMapInterpolator:
    def __init__(self,
                 image_shape=[64, 64, 64],
                 method='rbf'):
        assert method in ['rbf', 'griddata', 'tf', 'tps'], "Method must be 'rbf' or 'griddata'"
        self.method = method
        self.image_shape = image_shape

        self.grid = self.__regular_grid()

    def __regular_grid(self):
        xx = np.linspace(0, self.image_shape[0], self.image_shape[0], endpoint=False, dtype=np.uint16)
        yy = np.linspace(0, self.image_shape[0], self.image_shape[0], endpoint=False, dtype=np.uint16)
        zz = np.linspace(0, self.image_shape[0], self.image_shape[0], endpoint=False, dtype=np.uint16)

        xx, yy, zz = np.meshgrid(xx, yy, zz)

        return np.stack([xx.flatten(), yy.flatten(), zz.flatten()], axis=0).T

    def __call__(self, disp_map, interp_points, backwards=False):
        disp_map = disp_map.reshape([-1, 3])
        grid_pts = self.grid.copy()
        if backwards:
            grid_pts = np.add(grid_pts, disp_map).astype(np.float32)
            disp_map *= -1

        if self.method == 'rbf':
            interpolator = Rbf(grid_pts[:, 0], grid_pts[:, 1], grid_pts[:, 2], disp_map[:, :],
                               method='thin_plate', mode='N-D')
            disp = interpolator(interp_points)
        elif self.method == 'griddata':
            linear_interp = LinearNDInterpolator(grid_pts, disp_map)
            disp = linear_interp(interp_points).copy()
            del linear_interp

            if np.any(np.isnan(disp)):
                # It might happen (though it shouldn't) that the interpolation point is outside the convex hull of grid points.
                #   in this situation, linear interpolation fails and will put NaN. Nearest can give a value, so we are going to
                #   substitute those unexpected NaNs with the nearest value. Unexpected == not in interp_points
                nan_disp_idx = set(np.unique(np.argwhere(np.isnan(disp))[:, 0]))
                nan_interp_pts_idx = set(np.unique(np.argwhere(np.isnan(interp_points))[:, 0]))
                idx = nan_disp_idx - nan_interp_pts_idx if len(nan_disp_idx) > len(nan_interp_pts_idx) else nan_interp_pts_idx - nan_disp_idx
                idx = list(idx)
                if len(idx):
                    # We have unexpected NaNs
                    near_interp = NearestNDInterpolator(grid_pts, disp_map)
                    near_disp = near_interp(interp_points[idx, ...]).copy()
                    del near_interp
                    for n, i in enumerate(idx):
                        disp[i, ...] = near_disp[n, ...]
        elif self.method == 'tf':
            # Order: 1 -> linear, 2 -> thin plate, 3 -> cubic
            disp = squeeze(interpolate_spline(grid_pts[np.newaxis, ...][::4, :],    # Batch axis
                                              disp_map[np.newaxis, ...][::4, :],
                                              interp_points[np.newaxis, ...], order=2), axis=0)
        else:
            tps_interp = ThinPlateSplines(grid_pts[::8, :], self.grid.copy().astype(np.float32)[::8, :])
            disp = tps_interp.interpolate(interp_points).eval()
            del tps_interp

        return disp


def get_segmentations_centroids(segmentations, ohe=True, expected_lbls=range(0, 28), missing_centroid=[np.nan]*3, brain_study=True):
    segmentations = np.squeeze(segmentations)
    if ohe:
        segmentations = np.sum(segmentations, axis=-1).astype(np.uint8)
        missing_lbls = set(expected_lbls) - set(np.unique(segmentations))
        if brain_study:
            segmentations += np.ones_like(segmentations)  # Regionsprops neglect the label 0. But we need it, so offset all labels by 1
    else:
        missing_lbls = set(expected_lbls) - set(np.unique(segmentations))

    seg_props = regionprops(segmentations)
    centroids = np.asarray([c.centroid for c in seg_props]).astype(np.float32)

    for lbl in missing_lbls:
        idx = expected_lbls.index(lbl)
        centroids = np.insert(centroids, idx, missing_centroid, axis=0)
    return centroids.copy(), missing_lbls


def segmentation_ohe_to_cardinal(segmentation):
    cpy = segmentation.copy()
    for lbl in range(segmentation.shape[-1]):
        cpy[..., lbl] *= (lbl + 1)
    # Add the Background
    cpy = np.concatenate([np.zeros(segmentation.shape[:-1])[..., np.newaxis], cpy], axis=-1)
    return np.argmax(cpy, axis=-1)[..., np.newaxis]


def segmentation_cardinal_to_ohe(segmentation):
    # Keep in mind that we don't handle the overlap between the segmentations!
    cpy = np.tile(np.zeros_like(segmentation), (1, 1, 1, len(np.unique(segmentation)[1:])))
    for ch, lbl in enumerate(np.unique(segmentation)[1:]):
        cpy[segmentation == lbl, ch] = 1
    return cpy