File size: 7,042 Bytes
286a978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
import os
import argparse
import re
import warnings
import nibabel as nib
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap
segm_cm = cm.get_cmap('Dark2', 256)
segm_cm = segm_cm(np.linspace(0, 1, 28))
segm_cm[0, :] = np.asarray([0, 0, 0, 0])
segm_cm = ListedColormap(segm_cm)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--dir', type=str, help='Directories where the models are stored', default=None)
parser.add_argument('-o', '--output', type=str, help='Output directory', default=os.getcwd())
parser.add_argument('--overwrite', type=bool, default=True)
args = parser.parse_args()
assert args.dir is not None, "No directories provided. Stopping"
list_fix_img = list()
list_mov_img = list()
list_fix_seg = list()
list_mov_seg = list()
list_pred_img = list()
list_pred_seg = list()
print('Fetching data...')
for r, d, f in os.walk(args.dir):
if os.path.split(r)[1] == 'Evaluation_paper':
for name in f:
if re.search('^050', name) and name.endswith('nii.gz'):
if re.search('fix_img', name) and name.endswith('nii.gz'):
list_fix_img.append(os.path.join(r, name))
elif re.search('mov_img', name):
list_mov_img.append(os.path.join(r, name))
elif re.search('fix_seg', name):
list_fix_seg.append(os.path.join(r, name))
elif re.search('mov_seg', name):
list_mov_seg.append(os.path.join(r, name))
elif re.search('pred_img', name):
list_pred_img.append(os.path.join(r, name))
elif re.search('pred_seg', name):
list_pred_seg.append(os.path.join(r, name))
# Figure: all coronal views
# Fix img | Mov img
# BASELINE 1 | BASELINE 2 | SEGGUIDED
# UW 1 | UW 2 | UW 3
list_fix_img.sort()
list_fix_seg.sort()
list_mov_img.sort()
list_mov_seg.sort()
list_pred_img.sort()
list_pred_seg.sort()
print('Making Test_data.png...')
selected_slice = 30
fix_img = np.asarray(nib.load(list_fix_img[0]).dataobj)[..., selected_slice, 0]
mov_img = np.asarray(nib.load(list_mov_img[0]).dataobj)[..., selected_slice, 0]
fix_seg = np.asarray(nib.load(list_fix_seg[0]).dataobj)[..., selected_slice, 0]
mov_seg = np.asarray(nib.load(list_mov_seg[0]).dataobj)[..., selected_slice, 0]
fig, ax = plt.subplots(nrows=1, ncols=4, figsize=(9, 3), dpi=200)
for i, (img, title) in enumerate(zip([(fix_img, fix_seg), (mov_img, mov_seg)],
[('Fixed image', 'Fixed Segms.'), ('Moving image', 'Moving Segms.')])):
ax[i].imshow(img[0], origin='lower', cmap='Greys_r')
ax[i+2].imshow(img[0], origin='lower', cmap='Greys_r')
ax[i+2].imshow(img[1], origin='lower', cmap=segm_cm, alpha=0.6)
ax[i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[i+2].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[i].set_xlabel(title[0], fontsize=16)
ax[i+2].set_xlabel(title[1], fontsize=16)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Test_data.png')):
warnings.warn('File Test_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Test_data.png'), format='png')
plt.close()
print('Making Pred_data.png...')
fig, ax = plt.subplots(nrows=2, ncols=6, figsize=(9, 3), dpi=200)
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
img = np.asarray(nib.load(pred_img_path).dataobj)[..., selected_slice, 0]
seg = np.asarray(nib.load(pred_seg_path).dataobj)[..., selected_slice, 0]
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6)
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
model = re.search('((UW|SEGGUIDED|BASELINE).*)_{2,}MET', pred_img_path).group(1).rstrip('_')
model = model.replace('_Lsim', ' ')
model = model.replace('_Lseg', ' ')
model = model.replace('_L', ' ')
model = model.replace('_', ' ')
model = model.upper()
model = ' '.join(model.split())
ax[1, i].set_xlabel(model, fontsize=9)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data.png')):
warnings.warn('File Pred_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Pred_data.png'), format='png')
plt.close()
print('Making Pred_data_large.png...')
fig, ax = plt.subplots(nrows=2, ncols=8, figsize=(9, 3), dpi=200)
list_pred_img = [list_mov_img[0]] + list_pred_img
list_pred_img = [list_fix_img[0]] + list_pred_img
list_pred_seg = [list_mov_seg[0]] + list_pred_seg
list_pred_seg = [list_fix_seg[0]] + list_pred_seg
for i, (pred_img_path, pred_seg_path) in enumerate(zip(list_pred_img, list_pred_seg)):
img = np.asarray(nib.load(pred_img_path).dataobj)[..., selected_slice, 0]
seg = np.asarray(nib.load(pred_seg_path).dataobj)[..., selected_slice, 0]
ax[0, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(img, origin='lower', cmap='Greys_r')
ax[1, i].imshow(seg, origin='lower', cmap=segm_cm, alpha=0.6)
ax[0, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
ax[1, i].tick_params(axis='both', which='both', bottom=False, left=False, labelleft=False, labelbottom=False)
if i > 1:
model = re.search('((UW|SEGGUIDED|BASELINE).*)_{2,}MET', pred_img_path).group(1).rstrip('_')
model = model.replace('_Lsim', ' ')
model = model.replace('_Lseg', ' ')
model = model.replace('_L', ' ')
model = model.replace('_', ' ')
model = model.upper()
model = ' '.join(model.split())
elif i == 0:
model = 'Moving image'
else:
model = 'Fixed image'
ax[1, i].set_xlabel(model, fontsize=7)
plt.tight_layout()
if not args.overwrite and os.path.exists(os.path.join(args.output, 'Pred_data_large.png')):
warnings.warn('File Pred_data.png already exists. Skipping')
else:
plt.savefig(os.path.join(args.output, 'Pred_data_large.png'), format='png')
plt.close()
print('...done!')
|