File size: 19,318 Bytes
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import sys, os
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)  # PYTHON > 3.3 does not allow relative referencing

PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True'

import numpy as np
from tensorflow import keras
import os
import h5py
import random
from PIL import Image

import DeepDeformationMapRegistration.utils.constants as C
from DeepDeformationMapRegistration.utils.operators import min_max_norm


class DataGeneratorManager(keras.utils.Sequence):
    def __init__(self, dataset_path, batch_size=32, shuffle=True, num_samples=None, validation_split=None, validation_samples=None,
                 clip_range=[0., 1.], voxelmorph=False, segmentations=False,
                 seg_labels: dict = {'bg': 0, 'vessels': 1, 'tumour': 2, 'parenchyma': 3}):
        # Get the list of files
        self.__list_files = self.__get_dataset_files(dataset_path)
        self.__list_files.sort()
        self.__dataset_path = dataset_path
        self.__shuffle = shuffle
        self.__total_samples = len(self.__list_files)
        self.__validation_split = validation_split
        self.__clip_range = clip_range
        self.__batch_size = batch_size

        self.__validation_samples = validation_samples

        self.__voxelmorph = voxelmorph
        self.__segmentations = segmentations
        self.__seg_labels = seg_labels

        if num_samples is not None:
            self.__num_samples = self.__total_samples if num_samples > self.__total_samples else num_samples
        else:
            self.__num_samples = self.__total_samples

        self.__internal_idxs = np.arange(self.__num_samples)

        # Split it accordingly
        if validation_split is None:
            self.__validation_num_samples = None
            self.__validation_idxs = list()
            if self.__shuffle:
                random.shuffle(self.__internal_idxs)
            self.__training_idxs = self.__internal_idxs

            self.__validation_generator = None
        else:
            self.__validation_num_samples = int(np.ceil(self.__num_samples * validation_split))
            if self.__shuffle:
                self.__validation_idxs = np.random.choice(self.__internal_idxs, self.__validation_num_samples)
            else:
                self.__validation_idxs = self.__internal_idxs[0: self.__validation_num_samples]
            self.__training_idxs = np.asarray([idx for idx in self.__internal_idxs if idx not in self.__validation_idxs])
            # Build them DataGenerators
            self.__validation_generator = DataGenerator(self, 'validation')

        self.__train_generator = DataGenerator(self, 'train')
        self.reshuffle_indices()

    @property
    def dataset_path(self):
        return self.__dataset_path

    @property
    def dataset_list_files(self):
        return self.__list_files

    @property
    def train_idxs(self):
        return self.__training_idxs

    @property
    def validation_idxs(self):
        return self.__validation_idxs

    @property
    def batch_size(self):
        return self.__batch_size

    @property
    def clip_rage(self):
        return self.__clip_range

    @property
    def shuffle(self):
        return self.__shuffle

    def get_generator_idxs(self, generator_type):
        if generator_type == 'train':
            return self.train_idxs
        elif generator_type == 'validation':
            return self.validation_idxs
        else:
            raise ValueError('Invalid generator type: ', generator_type)

    @staticmethod
    def __get_dataset_files(search_path):
        """
        Get the path to the dataset files
        :param  search_path: dir path to search for the hd5 files
        :return:
        """
        file_list = list()
        for root, dirs, files in os.walk(search_path):
            file_list.sort()
            for data_file in files:
                file_name, extension = os.path.splitext(data_file)
                if extension.lower() == '.hd5':
                    file_list.append(os.path.join(root, data_file))

        if not file_list:
            raise ValueError('No files found to train in ', search_path)

        print('Found {} files in {}'.format(len(file_list), search_path))
        return file_list

    def reshuffle_indices(self):
        if self.__validation_num_samples is None:
            if self.__shuffle:
                random.shuffle(self.__internal_idxs)
            self.__training_idxs = self.__internal_idxs
        else:
            if self.__shuffle:
                self.__validation_idxs = np.random.choice(self.__internal_idxs, self.__validation_num_samples)
            else:
                self.__validation_idxs = self.__internal_idxs[0: self.__validation_num_samples]
            self.__training_idxs = np.asarray([idx for idx in self.__internal_idxs if idx not in self.__validation_idxs])

            # Update the indices
            self.__validation_generator.update_samples(self.__validation_idxs)

        self.__train_generator.update_samples(self.__training_idxs)

    def get_generator(self, type='train'):
        if type.lower() == 'train':
            return self.__train_generator
        elif type.lower() == 'validation':
            if self.__validation_generator is not None:
                return self.__validation_generator
            else:
                raise Warning('No validation generator available. Set a non-zero validation_split to build one.')
        else:
            raise ValueError('Unknown dataset type "{}". Expected "train" or "validation"'.format(type))

    @property
    def is_voxelmorph(self):
        return self.__voxelmorph

    @property
    def give_segmentations(self):
        return self.__segmentations

    @property
    def seg_labels(self):
        return self.__seg_labels


class DataGenerator(DataGeneratorManager):
    def __init__(self, GeneratorManager: DataGeneratorManager, dataset_type='train'):
        self.__complete_list_files = GeneratorManager.dataset_list_files
        self.__list_files = [self.__complete_list_files[idx] for idx in GeneratorManager.get_generator_idxs(dataset_type)]
        self.__batch_size = GeneratorManager.batch_size
        self.__total_samples = len(self.__list_files)
        self.__clip_range = GeneratorManager.clip_rage
        self.__manager = GeneratorManager
        self.__shuffle = GeneratorManager.shuffle

        self.__seg_labels = GeneratorManager.seg_labels

        self.__num_samples = len(self.__list_files)
        self.__internal_idxs = np.arange(self.__num_samples)
        # These indices are internal to the generator, they are not the same as the dataset_idxs!!

        self.__dataset_type = dataset_type

        self.__last_batch = 0
        self.__batches_per_epoch = int(np.floor(len(self.__internal_idxs) / self.__batch_size))

        self.__voxelmorph = GeneratorManager.is_voxelmorph
        self.__segmentations = GeneratorManager.is_voxelmorph and GeneratorManager.give_segmentations

    @staticmethod
    def __get_dataset_files(search_path):
        """
        Get the path to the dataset files
        :param  search_path: dir path to search for the hd5 files
        :return:
        """
        file_list = list()
        for root, dirs, files in os.walk(search_path):
            for data_file in files:
                file_name, extension = os.path.splitext(data_file)
                if extension.lower() == '.hd5':
                    file_list.append(os.path.join(root, data_file))

        if not file_list:
            raise ValueError('No files found to train in ', search_path)

        print('Found {} files in {}'.format(len(file_list), search_path))
        return file_list

    def update_samples(self, new_sample_idxs):
        self.__list_files = [self.__complete_list_files[idx] for idx in new_sample_idxs]
        self.__num_samples = len(self.__list_files)
        self.__internal_idxs = np.arange(self.__num_samples)

    def on_epoch_end(self):
        """
        To be executed at the end of each epoch. Reshuffle the assigned samples
        :return:
        """
        if self.__shuffle:
            random.shuffle(self.__internal_idxs)
        self.__last_batch = 0

    def __len__(self):
        """
        Number of batches per epoch
        :return:
        """
        return self.__batches_per_epoch

    def __getitem__(self, index):
        """
        Generate one batch of data
        :param index: epoch index
        :return:
        """
        idxs = self.__internal_idxs[index * self.__batch_size:(index + 1) * self.__batch_size]

        fix_img, mov_img, fix_vessels, mov_vessels, fix_tumour, mov_tumour, disp_map = self.__load_data(idxs)

        try:
            fix_img = min_max_norm(fix_img).astype(np.float32)
            mov_img = min_max_norm(mov_img).astype(np.float32)
        except ValueError:
            print(idxs, fix_img.shape, mov_img.shape)
            er_str = 'ERROR:\t[file]:\t{}\t[idx]:\t{}\t[fix_img.shape]:\t{}\t[mov_img.shape]:\t{}\t'.format(self.__list_files[idxs], idxs, fix_img.shape, mov_img.shape)
            raise ValueError(er_str)

        fix_vessels[fix_vessels > 0.] = self.__seg_labels['vessels']
        mov_vessels[mov_vessels > 0.] = self.__seg_labels['vessels']

        # fix_tumour[fix_tumour > 0.] = self.__seg_labels['tumour']
        # mov_tumour[mov_tumour > 0.] = self.__seg_labels['tumour']

        # https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
        # A generator or keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample_weights)
        # The second element must match the outputs of the model, in this case (image, displacement map)
        if self.__voxelmorph:
            zero_grad = np.zeros([fix_img.shape[0], *C.DISP_MAP_SHAPE])
            if self.__segmentations:
                inputs = [mov_vessels, fix_vessels, mov_img, fix_img, zero_grad]
                outputs = []  #[fix_img, zero_grad]
            else:
                inputs = [mov_img, fix_img]
                outputs = [fix_img, zero_grad]
            return (inputs, outputs)
        else:
            return (fix_img, mov_img, fix_vessels, mov_vessels), # (None, fix_seg, fix_seg, fix_img)

    def next_batch(self):
        if self.__last_batch > self.__batches_per_epoch:
            raise ValueError('No more batches for this epoch')
        batch = self.__getitem__(self.__last_batch)
        self.__last_batch += 1
        return batch

    def __load_data(self, idx_list):
        """
        Build the batch with the samples in idx_list
        :param idx_list:
        :return:
        """
        if isinstance(idx_list, (list, np.ndarray)):
            fix_img = np.empty((0, ) + C.IMG_SHAPE)
            mov_img = np.empty((0, ) + C.IMG_SHAPE)
            disp_map = np.empty((0, ) + C.DISP_MAP_SHAPE)

            # fix_segm = np.empty((0, ) + const.IMG_SHAPE)
            # mov_segm = np.empty((0, ) + const.IMG_SHAPE)

            fix_vessels = np.empty((0, ) + C.IMG_SHAPE)
            mov_vessels = np.empty((0, ) + C.IMG_SHAPE)
            fix_tumors = np.empty((0, ) + C.IMG_SHAPE)
            mov_tumors = np.empty((0, ) + C.IMG_SHAPE)
            for idx in idx_list:
                data_file = h5py.File(self.__list_files[idx], 'r')

                fix_img = np.append(fix_img, [data_file[C.H5_FIX_IMG][:]], axis=0)
                mov_img = np.append(mov_img, [data_file[C.H5_MOV_IMG][:]], axis=0)

                # fix_segm = np.append(fix_segm, [data_file[const.H5_FIX_PARENCHYMA_MASK][:]], axis=0)
                # mov_segm = np.append(mov_segm, [data_file[const.H5_MOV_PARENCHYMA_MASK][:]], axis=0)

                disp_map = np.append(disp_map, [data_file[C.H5_GT_DISP][:]], axis=0)

                fix_vessels = np.append(fix_vessels, [data_file[C.H5_FIX_VESSELS_MASK][:]], axis=0)
                mov_vessels = np.append(mov_vessels, [data_file[C.H5_MOV_VESSELS_MASK][:]], axis=0)
                fix_tumors = np.append(fix_tumors, [data_file[C.H5_FIX_TUMORS_MASK][:]], axis=0)
                mov_tumors = np.append(mov_tumors, [data_file[C.H5_MOV_TUMORS_MASK][:]], axis=0)

                data_file.close()
        else:
            data_file = h5py.File(self.__list_files[idx_list], 'r')

            fix_img = np.expand_dims(data_file[C.H5_FIX_IMG][:], 0)
            mov_img = np.expand_dims(data_file[C.H5_MOV_IMG][:], 0)

            # fix_segm = np.expand_dims(data_file[const.H5_FIX_PARENCHYMA_MASK][:], 0)
            # mov_segm = np.expand_dims(data_file[const.H5_MOV_PARENCHYMA_MASK][:], 0)

            fix_vessels = np.expand_dims(data_file[C.H5_FIX_VESSELS_MASK][:], axis=0)
            mov_vessels = np.expand_dims(data_file[C.H5_MOV_VESSELS_MASK][:], axis=0)
            fix_tumors = np.expand_dims(data_file[C.H5_FIX_TUMORS_MASK][:], axis=0)
            mov_tumors = np.expand_dims(data_file[C.H5_MOV_TUMORS_MASK][:], axis=0)

            disp_map = np.expand_dims(data_file[C.H5_GT_DISP][:], 0)

            data_file.close()

        return fix_img, mov_img, fix_vessels, mov_vessels, fix_tumors, mov_tumors, disp_map

    def get_single_sample(self):
        fix_img, mov_img, fix_segm, mov_segm, _ = self.__load_data(0)
        # return X, y
        return np.expand_dims(np.concatenate([mov_img, fix_img, mov_segm, mov_segm], axis=-1), axis=0)

    def get_random_sample(self, num_samples):
        idxs = np.random.randint(0, self.__num_samples, num_samples)
        fix_img, mov_img, fix_segm, mov_segm, disp_map = self.__load_data(idxs)

        return (fix_img, mov_img, fix_segm, mov_segm, disp_map), [self.__list_files[f] for f in idxs]

    def get_input_shape(self):
        input_batch, _ = self.__getitem__(0)
        if self.__voxelmorph:
            ret_val = list(input_batch[0].shape)
            ret_val[-1] = 2
            ret_val = (None, ) + tuple(ret_val[1:])
        else:
            ret_val = input_batch.shape
            ret_val = (None, ) + ret_val[1:]
        return ret_val # const.BATCH_SHAPE_SEGM

    def who_are_you(self):
        return self.__dataset_type

    def print_datafiles(self):
        return self.__list_files


class DataGeneratorManager2D:
    FIX_IMG_H5 = 'input/1'
    MOV_IMG_H5 = 'input/0'
    def __init__(self, h5_file_list, batch_size=32, data_split=0.7, img_size=None,
                 fix_img_tag=FIX_IMG_H5, mov_img_tag=MOV_IMG_H5, multi_loss=False):
        self.__file_list = h5_file_list #h5py.File(h5_file, 'r')
        self.__batch_size = batch_size
        self.__data_split = data_split

        self.__initialize()

        self.__train_generator = DataGenerator2D(self.__train_file_list,
                                                 batch_size=self.__batch_size,
                                                 img_size=img_size,
                                                 fix_img_tag=fix_img_tag,
                                                 mov_img_tag=mov_img_tag,
                                                 multi_loss=multi_loss)
        self.__val_generator = DataGenerator2D(self.__val_file_list,
                                               batch_size=self.__batch_size,
                                               img_size=img_size,
                                               fix_img_tag=fix_img_tag,
                                               mov_img_tag=mov_img_tag,
                                               multi_loss=multi_loss)

    def __initialize(self):
        num_samples = len(self.__file_list)
        random.shuffle(self.__file_list)

        data_split = int(np.floor(num_samples * self.__data_split))
        self.__val_file_list = self.__file_list[0:data_split]
        self.__train_file_list = self.__file_list[data_split:]

    @property
    def train_generator(self):
        return self.__train_generator

    @property
    def validation_generator(self):
        return self.__val_generator


class DataGenerator2D(keras.utils.Sequence):
    FIX_IMG_H5 = 'input/1'
    MOV_IMG_H5 = 'input/0'

    def __init__(self, file_list: list, batch_size=32, img_size=None, fix_img_tag=FIX_IMG_H5, mov_img_tag=MOV_IMG_H5, multi_loss=False):
        self.__file_list = file_list  # h5py.File(h5_file, 'r')
        self.__file_list.sort()
        self.__batch_size = batch_size
        self.__idx_list = np.arange(0, len(self.__file_list))
        self.__multi_loss = multi_loss

        self.__tags = {'fix_img': fix_img_tag,
                       'mov_img': mov_img_tag}

        self.__batches_seen = 0
        self.__batches_per_epoch = 0

        self.__img_size = img_size

        self.__initialize()

    def __len__(self):
        return self.__batches_per_epoch

    def __initialize(self):
        random.shuffle(self.__idx_list)

        if self.__img_size is None:
            f = h5py.File(self.__file_list[0], 'r')
            self.input_shape = f[self.__tags['fix_img']].shape  # Already defined in super()
            f.close()
        else:
            self.input_shape = self.__img_size

        if self.__multi_loss:
            self.input_shape = (self.input_shape, (*self.input_shape[:-1], 2))

        self.__batches_per_epoch = int(np.ceil(len(self.__file_list) / self.__batch_size))

    def __load_and_preprocess(self, fh, tag):
        img = fh[tag][:]

        if (self.__img_size is not None) and (img[..., 0].shape != self.__img_size):
            im = Image.fromarray(img[..., 0])  # Can't handle the 1 channel
            img = np.array(im.resize(self.__img_size[:-1], Image.LANCZOS)).astype(np.float32)
            img = img[..., np.newaxis]

        if img.max() > 1. or img.min() < 0.:
            try:
                img = min_max_norm(img).astype(np.float32)
            except ValueError:
                print(fh, tag, img.shape)
                er_str = 'ERROR:\t[file]:\t{}\t[tag]:\t{}\t[img.shape]:\t{}\t'.format(fh, tag, img.shape)
                raise ValueError(er_str)
        return img.astype(np.float32)

    def __getitem__(self, idx):
        idxs = self.__idx_list[idx * self.__batch_size:(idx + 1) * self.__batch_size]

        fix_imgs, mov_imgs = self.__load_samples(idxs)

        zero_grad = np.zeros((*fix_imgs.shape[:-1], 2))

        inputs = [mov_imgs, fix_imgs]
        outputs = [fix_imgs, zero_grad]

        if self.__multi_loss:
            return [mov_imgs, fix_imgs, zero_grad],
        else:
            return (inputs, outputs)

    def __load_samples(self, idx_list):
        if self.__multi_loss:
            img_shape = (0, *self.input_shape[0])
        else:
            img_shape = (0, *self.input_shape)

        fix_imgs = np.empty(img_shape)
        mov_imgs = np.empty(img_shape)
        for i in idx_list:
            f = h5py.File(self.__file_list[i], 'r')
            fix_imgs = np.append(fix_imgs, [self.__load_and_preprocess(f, self.__tags['fix_img'])], axis=0)
            mov_imgs = np.append(mov_imgs, [self.__load_and_preprocess(f, self.__tags['mov_img'])], axis=0)
            f.close()

        return fix_imgs, mov_imgs

    def on_epoch_end(self):
        np.random.shuffle(self.__idx_list)

    def get_single_sample(self):
        idx = random.randint(0, len(self.__idx_list))
        fix, mov = self.__load_samples([idx])
        return mov, fix