File size: 11,024 Bytes
6a4f823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a27d55f
 
 
 
 
 
 
 
6a4f823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
 
 
6a4f823
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
 
6a4f823
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import os, sys

import shutil

import h5py
import matplotlib.pyplot as plt

currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)  # PYTHON > 3.3 does not allow relative referencing

import tensorflow as tf
# tf.enable_eager_execution(config=config)

import numpy as np
import pandas as pd
import voxelmorph as vxm

import ddmr.utils.constants as C
from ddmr.utils.nifti_utils import save_nifti
from ddmr.layers import AugmentationLayer
from ddmr.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion
from ddmr.ms_ssim_tf import MultiScaleStructuralSimilarity
from ddmr.utils.acummulated_optimizer import AdamAccumulated
from ddmr.utils.visualization import save_disp_map_img, plot_predictions
from ddmr.utils.misc import segmentation_ohe_to_cardinal
from EvaluationScripts.Evaluate_class import EvaluationFigures, resize_pts_to_original_space, resize_img_to_original_space, resize_transformation
from scipy.interpolate import RegularGridInterpolator
from tqdm import tqdm

import h5py

from Brain_study.data_generator import BatchGenerator

import argparse

from skimage.transform import warp
import neurite as ne

DATASET = '/mnt/EncryptedData1/Users/javier/ext_datasets/IXI_dataset/T1/training'
MODEL_FILE = '/mnt/EncryptedData1/Users/javier/train_output/Brain_study/ERASE/MS_SSIM/BASELINE_L_ssim__MET_mse_ncc_ssim_162756-29062021/checkpoints/best_model.h5'
DATA_ROOT_DIR = '/mnt/EncryptedData1/Users/javier/train_output/Brain_study/ERASE/MS_SSIM/BASELINE_L_ssim__MET_mse_ncc_ssim_162756-29062021/'

OUTPUT_FOLDER_NAME = 'Evaluate'

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-m', '--model', type=str, help='.h5 of the model', default='')
    parser.add_argument('-d', '--dir', type=str, help='Directory where ./checkpoints/best_model.h5 is located', default='')
    parser.add_argument('--gpu', type=int, help='GPU', default=0)
    parser.add_argument('--dataset', type=str, help='Dataset to run predictions on',
                        default='/mnt/EncryptedData1/Users/javier/ext_datasets/IXI_dataset/T1/training')
    parser.add_argument('--erase', type=bool, help='Erase the content of the output folder', default=False)
    args = parser.parse_args()
    if args.model != '':
        assert '.h5' in args.model, 'No checkpoint file provided, use -d/--dir instead'
        MODEL_FILE = args.model
        DATA_ROOT_DIR = os.path.split(args.model)[0]
    elif args.dir != '':
        assert '.h5' not in args.model, 'Provided checkpoint file, user -m/--model instead'
        MODEL_FILE = os.path.join(args.dir, 'checkpoints', 'best_model.h5')
        DATA_ROOT_DIR = args.dir
    else:
        raise ValueError("Provide either the model file or the directory ./containing checkpoints/best_model.h5")

    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)  # Check availability before running using 'nvidia-smi'
    DATASET = args.dataset

    print('MODEL LOCATION: ', MODEL_FILE)

    # data_folder = '/mnt/EncryptedData1/Users/javier/train_output/DDMR/THESIS/BASELINE_Affine_ncc___mse_ncc_160606-25022021'
    output_folder = os.path.join(DATA_ROOT_DIR, OUTPUT_FOLDER_NAME)  # '/mnt/EncryptedData1/Users/javier/train_output/DDMR/THESIS/eval/BASELINE_TRAIN_Affine_ncc_EVAL_Affine'
    # os.makedirs(os.path.join(output_folder, 'images'), exist_ok=True)
    if args.erase:
        shutil.rmtree(output_folder, ignore_errors=True)
    os.makedirs(output_folder, exist_ok=True)
    print('DESTINATION FOLDER: ', output_folder)

    data_generator = BatchGenerator(DATASET, 1, False, 1.0, False, ['all'])

    img_generator = data_generator.get_train_generator()
    nb_labels = len(img_generator.get_segmentation_labels())
    image_input_shape = img_generator.get_data_shape()[-1][:-1]
    image_output_shape = [64] * 3

    # Build model

    input_augm = tf.keras.Input(shape=img_generator.get_data_shape()[0], name='input_augm')
    augm_layer = AugmentationLayer(max_displacement=C.MAX_AUG_DISP,  # Max 30 mm in isotropic space
                                   max_deformation=C.MAX_AUG_DEF,  # Max 6 mm in isotropic space
                                   max_rotation=C.MAX_AUG_ANGLE,  # Max 10 deg in isotropic space
                                   num_control_points=C.NUM_CONTROL_PTS_AUG,
                                   num_augmentations=C.NUM_AUGMENTATIONS,
                                   gamma_augmentation=C.GAMMA_AUGMENTATION,
                                   brightness_augmentation=C.BRIGHTNESS_AUGMENTATION,
                                   in_img_shape=image_input_shape,
                                   out_img_shape=image_output_shape,
                                   only_image=False,
                                   only_resize=False,
                                   trainable=False)
    augm_model = tf.keras.Model(inputs=input_augm, outputs=augm_layer(input_augm))

    loss_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).loss,
                 NCC(image_input_shape).loss,
                 vxm.losses.MSE().loss,
                 MultiScaleStructuralSimilarity(max_val=1., filter_size=3).loss]

    metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric,
                   NCC(image_input_shape).metric,
                   vxm.losses.MSE().loss,
                   MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric,
                   GeneralizedDICEScore(image_output_shape + [img_generator.get_data_shape()[2][-1]], num_labels=nb_labels).loss,
                   HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [img_generator.get_data_shape()[2][-1]]).loss]

    network = tf.keras.models.load_model(MODEL_FILE, {'VxmDenseSemiSupervisedSeg': vxm.networks.VxmDenseSemiSupervisedSeg,
                                                      'VxmDense': vxm.networks.VxmDense,
                                                      'AdamAccumulated': AdamAccumulated,
                                                      'loss': loss_fncs,
                                                      'metric': metric_fncs},
                                         compile=False)

    # Needed for VxmDense type of network
    warp_segmentation = vxm.networks.Transform(image_output_shape, interp_method='nearest', nb_feats=nb_labels)

    # Record metrics
    metrics = pd.DataFrame(columns=['File', 'SSIM', 'MS-SSIM', 'MSE', 'DICE', 'HD'])
    config = tf.compat.v1.ConfigProto()  # device_count={'GPU':0})
    config.gpu_options.allow_growth = True
    config.log_device_placement = False  ## to log device placement (on which device the operation ran)

    sess = tf.Session(config=config)
    tf.keras.backend.set_session(sess)
    with sess.as_default():
        sess.run(tf.global_variables_initializer())
        network.load_weights(MODEL_FILE, by_name=True)
        progress_bar = tqdm(enumerate(img_generator, 1), desc='Evaluation', total=len(img_generator))
        for step, (in_batch, _) in progress_bar:
            fix_img, mov_img, fix_seg, mov_seg = augm_model.predict(in_batch)

            if network.name == 'vxm_dense_semi_supervised_seg':
                pred_img, disp_map, pred_seg = network.predict([mov_img, fix_img, mov_seg, fix_seg])    # predict([source, target])
            else:
                pred_img, disp_map = network.predict([mov_img, fix_img])
                pred_seg = warp_segmentation.predict([mov_seg, disp_map])

            # I need the labels to be OHE to compute the segmentation metrics.
            dice = GeneralizedDICEScore(image_output_shape + [img_generator.get_data_shape()[2][-1]], num_labels=nb_labels).metric(fix_seg, pred_seg).eval()
            hd = HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [img_generator.get_data_shape()[2][-1]]).metric(fix_seg, pred_seg).eval()

            pred_seg = segmentation_ohe_to_cardinal(pred_seg).astype(np.float32)
            mov_seg = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
            fix_seg = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)

            mov_coords = np.stack(np.meshgrid(*[np.arange(0, 64)]*3), axis=-1)
            dest_coords = mov_coords + disp_map[0, ...]

            ssim = StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric(fix_img, pred_img).eval()
            ms_ssim = MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric(fix_img, pred_img).eval()[0]
            mse = vxm.losses.MSE().loss(fix_img, pred_img).eval()

            metrics.append({'File': step,
                            'SSIM': ssim,
                            'MS-SSIM': ms_ssim,
                            'MSE': mse,
                            'DICE': dice,
                            'HD': hd}, ignore_index=True)
            save_nifti(fix_img[0, ...], os.path.join(output_folder, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
            save_nifti(mov_img[0, ...], os.path.join(output_folder, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
            save_nifti(pred_img[0, ...], os.path.join(output_folder, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
            save_nifti(fix_seg[0, ...], os.path.join(output_folder, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
            save_nifti(mov_seg[0, ...], os.path.join(output_folder, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
            save_nifti(pred_seg[0, ...], os.path.join(output_folder, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)

            magnitude = np.sqrt(np.sum(disp_map[0, ...] ** 2, axis=-1))
            _ = plt.hist(magnitude.flatten())
            plt.title('Histogram of disp. magnitudes')
            # plt.show(block=False)
            plt.savefig(os.path.join(output_folder, '{:03d}_hist_mag_ssim_{:.03f}_dice_{:.03f}.png'.format(step, ssim, dice)))
            plt.close()

            plot_predictions(img_batches=[fix_img, mov_img, pred_img], disp_map_batch=disp_map, seg_batches=[fix_seg, mov_seg, pred_seg], filename=os.path.join(output_folder, '{:03d}_figures_seg.png'.format(step)), show=False)
            plot_predictions(img_batches=[fix_img, mov_img, pred_img], disp_map_batch=disp_map, filename=os.path.join(output_folder, '{:03d}_figures_img.png'.format(step)), show=False)
            save_disp_map_img(disp_map, 'Displacement map', os.path.join(output_folder, '{:03d}_disp_map_fig.png'.format(step)), show=False)

            progress_bar.set_description('SSIM {:.04f}\tDICE: {:.04f}'.format(ssim, dice))

    metrics.to_csv(os.path.join(output_folder, 'metrics.csv'))
    print('Done')