File size: 18,985 Bytes
476daa5
 
 
 
 
 
 
 
286a978
476daa5
 
 
 
 
a27d55f
 
476daa5
a27d55f
 
 
 
 
 
476daa5
 
 
 
 
286a978
476daa5
 
 
 
 
 
 
e5764e7
476daa5
 
 
e5764e7
 
286a978
476daa5
e5764e7
 
 
476daa5
 
 
 
 
 
e5764e7
 
 
286a978
 
 
 
 
 
 
 
 
 
476daa5
 
 
 
 
 
 
e5764e7
 
476daa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
476daa5
286a978
476daa5
 
 
 
 
 
e5764e7
476daa5
 
 
 
 
 
 
 
 
 
e5764e7
 
 
 
476daa5
 
 
 
 
 
 
e5764e7
 
 
476daa5
286a978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
476daa5
286a978
 
 
476daa5
 
 
 
 
286a978
 
476daa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
 
 
476daa5
 
 
 
 
 
 
 
286a978
476daa5
 
 
 
 
 
 
 
 
 
 
 
286a978
476daa5
286a978
476daa5
 
 
 
286a978
 
476daa5
 
 
 
 
 
 
 
 
 
286a978
476daa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
476daa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
476daa5
 
 
 
 
 
286a978
476daa5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import os, sys

currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir)  # PYTHON > 3.3 does not allow relative referencing

from datetime import datetime

from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping, ReduceLROnPlateau
from tensorflow.python.keras.utils import Progbar
from tensorflow.keras import Input
from tensorflow.keras.models import Model
from tensorflow.python.framework.errors import InvalidArgumentError

import ddmr.utils.constants as C
from ddmr.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, \
    HausdorffDistanceErosion
from ddmr.ms_ssim_tf import MultiScaleStructuralSimilarity
from ddmr.ms_ssim_tf import _MSSSIM_WEIGHTS
from ddmr.utils.acummulated_optimizer import AdamAccumulated
from ddmr.utils.misc import function_decorator
from ddmr.layers import AugmentationLayer, UncertaintyWeighting
from ddmr.utils.nifti_utils import save_nifti

from Brain_study.data_generator import BatchGenerator
from Brain_study.utils import SummaryDictionary, named_logs

import COMET.augmentation_constants as COMET_C
from COMET.utils import freeze_layers_by_group

import numpy as np
import tensorflow as tf
import voxelmorph as vxm
import h5py
import re
import itertools
import warnings


def launch_train(dataset_folder, validation_folder, output_folder, model_file, gpu_num=0, lr=1e-4, rw=5e-3,
                 simil=['ssim'], segm=['dice'], max_epochs=C.EPOCHS, early_stop_patience=1000, prior_reg_w=5e-3,
                 freeze_layers=None, acc_gradients=1, batch_size=16, image_size=64,
                 unet=[16, 32, 64, 128, 256], head=[16, 16], resume=None):
    # 0. Input checks
    assert dataset_folder is not None and output_folder is not None
    if model_file != '':
        assert '.h5' in model_file, 'The model must be an H5 file'

    # 1. Load variables
    os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
    os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_num)  # Check availability before running using 'nvidia-smi'
    C.GPU_NUM = str(gpu_num)

    if batch_size != 1 and acc_gradients != 1:
        warnings.warn('WARNING: Batch size and Accumulative gradient step are set!')

    if resume is not None:
        try:
            assert os.path.exists(resume) and len(os.listdir(os.path.join(resume, 'checkpoints'))), 'Invalid directory: ' + resume
            output_folder = resume
            resume = True
        except AssertionError:
            output_folder = os.path.join(output_folder + '_' + datetime.now().strftime("%H%M%S-%d%m%Y"))
            resume = False
    else:
        resume = False

    os.makedirs(output_folder, exist_ok=True)
    # dataset_copy = DatasetCopy(dataset_folder, os.path.join(output_folder, 'temp'))
    log_file = open(os.path.join(output_folder, 'log.txt'), 'w')
    C.TRAINING_DATASET = dataset_folder  # dataset_copy.copy_dataset()
    C.VALIDATION_DATASET = validation_folder
    C.ACCUM_GRADIENT_STEP = acc_gradients
    C.BATCH_SIZE = batch_size if C.ACCUM_GRADIENT_STEP == 1 else 1
    C.EARLY_STOP_PATIENCE = early_stop_patience
    C.LEARNING_RATE = lr
    C.LIMIT_NUM_SAMPLES = None
    C.EPOCHS = max_epochs

    aux = "[{}]\tINFO:\nTRAIN DATASET: {}\nVALIDATION DATASET: {}\n" \
          "GPU: {}\n" \
          "BATCH SIZE: {}\n" \
          "LR: {}\n" \
          "SIMILARITY: {}\n" \
          "SEGMENTATION: {}\n" \
          "REG. WEIGHT: {}\n" \
          "EPOCHS: {:d}\n" \
          "ACCUM. GRAD: {}\n" \
          "EARLY STOP PATIENCE: {}\n" \
          "FROZEN LAYERS: {}".format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'),
                                     C.TRAINING_DATASET,
                                     C.VALIDATION_DATASET,
                                     C.GPU_NUM,
                                     C.BATCH_SIZE,
                                     C.LEARNING_RATE,
                                     simil,
                                     segm,
                                     rw,
                                     C.EPOCHS,
                                     C.ACCUM_GRADIENT_STEP,
                                     C.EARLY_STOP_PATIENCE,
                                     freeze_layers)

    log_file.write(aux)
    print(aux)

    # 2. Data generator
    used_labels = [0, 1, 2]
    data_generator = BatchGenerator(C.TRAINING_DATASET, C.BATCH_SIZE if C.ACCUM_GRADIENT_STEP == 1 else 1, True,
                                    C.TRAINING_PERC, labels=used_labels, combine_segmentations=False,
                                    directory_val=C.VALIDATION_DATASET)

    train_generator = data_generator.get_train_generator()
    validation_generator = data_generator.get_validation_generator()

    image_input_shape = train_generator.get_data_shape()[-1][:-1]
    image_output_shape = [image_size] * 3
    nb_labels = len(train_generator.get_segmentation_labels())

    # 3. Load model
    # IMPORTANT: the mode MUST be loaded AFTER setting up the session configuration
    config = tf.compat.v1.ConfigProto()  # device_count={'GPU':0})
    config.gpu_options.allow_growth = True
    config.log_device_placement = False  ## to log device placement (on which device the operation ran)
    sess = tf.Session(config=config)
    tf.keras.backend.set_session(sess)

    # enc_features = [16, 32, 32, 32]     # const.ENCODER_FILTERS
    # dec_features = [32, 32, 32, 32, 32, 16, 16]     # const.ENCODER_FILTERS[::-1]
    enc_features = unet  # const.ENCODER_FILTERS
    dec_features = enc_features[::-1] + head  # const.ENCODER_FILTERS[::-1]
    nb_features = [enc_features, dec_features]
    network = vxm.networks.VxmDenseSemiSupervisedSeg(inshape=image_output_shape,
                                                     nb_labels=nb_labels,
                                                     nb_unet_features=nb_features,
                                                     int_steps=0,
                                                     int_downsize=1,
                                                     seg_downsize=1)
    if model_file != '':
        print('MODEL LOCATION: ', model_file)
        network.load_weights(model_file, by_name=True)

    resume_epoch = 0
    if resume:
        cp_dir = os.path.join(output_folder, 'checkpoints')
        cp_file_list = [os.path.join(cp_dir, f) for f in os.listdir(cp_dir) if (f.startswith('checkpoint') and f.endswith('.h5'))]
        if len(cp_file_list):
            cp_file_list.sort()
            checkpoint_file = cp_file_list[-1]
            if os.path.exists(checkpoint_file):
                network.load_weights(checkpoint_file, by_name=True)
                print('Loaded checkpoint file: ' + checkpoint_file)
                try:
                    resume_epoch = int(re.match('checkpoint\.(\d+)-*.h5', os.path.split(checkpoint_file)[-1])[1])
                except TypeError:
                    # Checkpoint file has no epoch number in the name
                    resume_epoch = 0
                print('Resuming from epoch: {:d}'.format(resume_epoch))
            else:
                warnings.warn('Checkpoint file NOT found. Training from scratch')

    # 4. Freeze/unfreeze model layers
    _, frozen_layers = freeze_layers_by_group(network, freeze_layers)
    if frozen_layers is not None:
        msg = "[INF]: Frozen layers {}".format(', '.join([str(a) for a in frozen_layers]))
    else:
        msg = "[INF] None frozen layers"
    print(msg)
    log_file.write(msg)

    network.summary(line_length=C.SUMMARY_LINE_LENGTH)
    network.summary(line_length=C.SUMMARY_LINE_LENGTH, print_fn=log_file.write)
    #   Complete the model with the augmentation layer
    input_layer_train = Input(shape=train_generator.get_data_shape()[0], name='input_train')
    augm_layer = AugmentationLayer(max_displacement=COMET_C.MAX_AUG_DISP,  # Max 30 mm in isotropic space
                                   max_deformation=COMET_C.MAX_AUG_DEF,  # Max 6 mm in isotropic space
                                   max_rotation=COMET_C.MAX_AUG_ANGLE,  # Max 10 deg in isotropic space
                                   num_control_points=COMET_C.NUM_CONTROL_PTS_AUG,
                                   num_augmentations=COMET_C.NUM_AUGMENTATIONS,
                                   gamma_augmentation=COMET_C.GAMMA_AUGMENTATION,
                                   brightness_augmentation=COMET_C.BRIGHTNESS_AUGMENTATION,
                                   in_img_shape=image_input_shape,
                                   out_img_shape=image_output_shape,
                                   only_image=False,  # If baseline then True
                                   only_resize=False,
                                   trainable=False)
    augm_model = Model(inputs=input_layer_train, outputs=augm_layer(input_layer_train))

    # 5. Setup training environment: loss, optimizer, callbacks, evaluation

    # Losses and loss weights
    SSIM_KER_SIZE = 5
    MS_SSIM_WEIGHTS = _MSSSIM_WEIGHTS[:3]
    MS_SSIM_WEIGHTS /= np.sum(MS_SSIM_WEIGHTS)
    loss_simil = []
    prior_loss_w = []
    for s in simil:
        if s == 'ssim':
            loss_simil.append(StructuralSimilarity_simplified(patch_size=SSIM_KER_SIZE, dim=3, dynamic_range=1.).loss)
            prior_loss_w.append(1.)
        elif s == 'ms_ssim':
            loss_simil.append(MultiScaleStructuralSimilarity(max_val=1., filter_size=SSIM_KER_SIZE,
                                                             power_factors=MS_SSIM_WEIGHTS).loss)
            prior_loss_w.append(1.)
        elif s == 'ncc':
            loss_simil.append(NCC(image_input_shape).loss)
            prior_loss_w.append(1.)
        elif s == 'mse':
            loss_simil.append(vxm.losses.MSE().loss)
            prior_loss_w.append(1.)
        else:
            raise ValueError('Unknown similarity function: ', s)

    loss_segm = []
    for s in segm:
        if s == 'dice':
            loss_segm.append(GeneralizedDICEScore(image_output_shape + [train_generator.get_data_shape()[2][-1]],
                                                  num_labels=nb_labels).loss)
            prior_loss_w.append(1.)
        elif s == 'dice_macro':
            loss_segm.append(GeneralizedDICEScore(image_output_shape + [train_generator.get_data_shape()[2][-1]],
                                                  num_labels=nb_labels).loss_macro)
            prior_loss_w.append(1.)
        elif s == 'hd':
            loss_segm.append(HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [
                train_generator.get_data_shape()[2][-1]]).loss)
            prior_loss_w.append(1.)
        else:
            raise ValueError('Unknown similarity function: ', s)

    # Uncertainty weigthing module
    grad = tf.keras.Input(shape=(*image_output_shape, 3), name='multiLoss_grad_input', dtype=tf.float32)
    fix_seg = tf.keras.Input(shape=(*image_output_shape, len(train_generator.get_segmentation_labels())),
                             name='multiLoss_fix_seg_input', dtype=tf.float32)

    multiLoss = UncertaintyWeighting(num_loss_fns=len(loss_simil) + len(loss_segm),
                                     num_reg_fns=1,
                                     loss_fns=[*loss_simil,
                                               *loss_segm],
                                     reg_fns=[vxm.losses.Grad('l2').loss],
                                     prior_loss_w=prior_loss_w,
                                     # prior_loss_w=[1., 0.1, 1., 1.],
                                     prior_reg_w=[prior_reg_w],
                                     name='MultiLossLayer')
    loss = multiLoss([*[network.inputs[1]] * len(loss_simil), *[fix_seg] * len(loss_segm),
                      *[network.outputs[0]] * len(loss_simil), *[network.outputs[2]] * len(loss_simil),
                      grad,
                      network.outputs[1]])

    # inputs = [mov_img, fix_img, mov_segm, fix_segm, zero_grads]
    # outputs = [pred_img, flow, pred_segm, loss]
    full_model = tf.keras.Model(inputs=network.inputs + [fix_seg, grad],
                                outputs=network.outputs + [loss])

    os.makedirs(os.path.join(output_folder, 'checkpoints'), exist_ok=True)
    os.makedirs(os.path.join(output_folder, 'tensorboard'), exist_ok=True)
    callback_tensorboard = TensorBoard(log_dir=os.path.join(output_folder, 'tensorboard'),
                                       batch_size=C.BATCH_SIZE, write_images=False, histogram_freq=0,
                                       update_freq='epoch',  # or 'batch' or integer
                                       write_graph=True, write_grads=True
                                       )
    callback_early_stop = EarlyStopping(monitor='val_loss', verbose=1, patience=C.EARLY_STOP_PATIENCE,
                                        min_delta=0.00001)

    callback_best_model = ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'best_model.h5'),
                                          save_best_only=True, monitor='val_loss', verbose=1, mode='min')
    callback_save_checkpoint = ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'checkpoint.h5'),
                                               save_weights_only=True, monitor='val_loss', verbose=0, mode='min')

    callback_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10)

    optimizer = AdamAccumulated(accumulation_steps=C.ACCUM_GRADIENT_STEP, learning_rate=C.LEARNING_RATE)
    full_model.compile(optimizer=optimizer,
                       loss=None, )

    # 6. Training loop
    callback_tensorboard.set_model(full_model)
    callback_early_stop.set_model(full_model)
    callback_best_model.set_model(network)  # ONLY SAVE THE NETWORK!!!
    callback_save_checkpoint.set_model(network)  # ONLY SAVE THE NETWORK!!!
    callback_lr.set_model(full_model)

    summary = SummaryDictionary(full_model, C.BATCH_SIZE)
    names = full_model.metrics_names
    zero_grads = tf.zeros_like(network.references.pos_flow, name='dummy_zero_grads')  # Dummy zeros-tensor
    log_file.write('\n\n[{}]\tINFO:\tStart training\n\n'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y')))

    with sess.as_default():
        # tf.global_variables_initializer()
        callback_tensorboard.on_train_begin()
        callback_early_stop.on_train_begin()
        callback_best_model.on_train_begin()
        callback_save_checkpoint.on_train_begin()
        callback_lr.on_train_begin()

        for epoch in range(resume_epoch, C.EPOCHS):
            callback_tensorboard.on_epoch_begin(epoch)
            callback_early_stop.on_epoch_begin(epoch)
            callback_best_model.on_epoch_begin(epoch)
            callback_save_checkpoint.on_epoch_begin(epoch)
            callback_lr.on_epoch_begin(epoch)

            print("\nEpoch {}/{}".format(epoch, C.EPOCHS))
            print("TRAIN")

            log_file.write(
                '\n\n[{}]\tINFO:\tTraining epoch {}\n\n'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'), epoch))
            progress_bar = Progbar(len(train_generator), width=30, verbose=1)
            for step, (in_batch, _) in enumerate(train_generator, 1):
                callback_best_model.on_train_batch_begin(step)
                callback_save_checkpoint.on_train_batch_begin(step)
                callback_early_stop.on_train_batch_begin(step)
                callback_lr.on_train_batch_begin(step)

                try:
                    fix_img, mov_img, fix_seg, mov_seg = augm_model.predict(in_batch)
                    np.nan_to_num(fix_img, copy=False)
                    np.nan_to_num(mov_img, copy=False)
                    if np.isnan(np.sum(mov_img)) or np.isnan(np.sum(fix_img)) or np.isinf(np.sum(mov_img)) or np.isinf(
                            np.sum(fix_img)):
                        msg = 'CORRUPTED DATA!! Unique: Fix: {}\tMoving: {}'.format(np.unique(fix_img),
                                                                                    np.unique(mov_img))
                        print(msg)
                        log_file.write('\n\n[{}]\tWAR: {}'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'), msg))

                except InvalidArgumentError as err:
                    print('TF Error : {}'.format(str(err)))
                    continue

                ret = full_model.train_on_batch(
                    x=(mov_img, fix_img, mov_seg, fix_seg, zero_grads))  # The second element doesn't matter

                summary.on_train_batch_end(ret)
                callback_best_model.on_train_batch_end(step, named_logs(full_model, ret))
                callback_save_checkpoint.on_train_batch_end(step, named_logs(full_model, ret))
                callback_early_stop.on_train_batch_end(step, named_logs(full_model, ret))
                callback_lr.on_train_batch_end(step, named_logs(full_model, ret))
                progress_bar.update(step, zip(names, ret))
                log_file.write('\t\tStep {:03d}: {}'.format(step, ret))
            val_values = progress_bar._values.copy()
            ret = [val_values[x][0] / val_values[x][1] for x in names]

            print('\nVALIDATION')
            log_file.write(
                '\n\n[{}]\tINFO:\tValidation epoch {}\n\n'.format(datetime.now().strftime('%H:%M:%S\t%d/%m/%Y'), epoch))
            progress_bar = Progbar(len(validation_generator), width=30, verbose=1)
            for step, (in_batch, _) in enumerate(validation_generator, 1):
                try:
                    fix_img, mov_img, fix_seg, mov_seg = augm_model.predict(in_batch)
                except InvalidArgumentError as err:
                    print('TF Error : {}'.format(str(err)))
                    continue

                ret = full_model.test_on_batch(x=(mov_img, fix_img, mov_seg, fix_seg, zero_grads))

                summary.on_validation_batch_end(ret)
                progress_bar.update(step, zip(names, ret))
                log_file.write('\t\tStep {:03d}: {}'.format(step, ret))
            val_values = progress_bar._values.copy()
            ret = [val_values[x][0] / val_values[x][1] for x in names]

            train_generator.on_epoch_end()
            validation_generator.on_epoch_end()
            epoch_summary = summary.on_epoch_end()  # summary resets after on_epoch_end() call
            callback_tensorboard.on_epoch_end(epoch, epoch_summary)
            callback_best_model.on_epoch_end(epoch, epoch_summary)
            callback_save_checkpoint.on_epoch_end(epoch, epoch_summary)
            callback_early_stop.on_epoch_end(epoch, epoch_summary)
            callback_lr.on_epoch_end(epoch, epoch_summary)
            print('End of epoch {}: '.format(epoch), ret, '\n')

        callback_tensorboard.on_train_end()
        callback_best_model.on_train_end()
        callback_save_checkpoint.on_train_end()
        callback_early_stop.on_train_end()
        callback_lr.on_train_end()
# 7. Wrap up