File size: 25,742 Bytes
476daa5 286a978 476daa5 a27d55f 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 82949fb 476daa5 286a978 476daa5 82949fb 476daa5 82949fb 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 82949fb 476daa5 82949fb 476daa5 82949fb 476daa5 82949fb 476daa5 286a978 476daa5 286a978 476daa5 82949fb 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 82949fb 286a978 476daa5 286a978 476daa5 286a978 476daa5 82949fb 476daa5 286a978 82949fb 286a978 476daa5 286a978 476daa5 286a978 476daa5 286a978 476daa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os, sys
import shutil
import time
import tkinter
import h5py
import matplotlib.pyplot as plt
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
import tensorflow as tf
# tf.enable_eager_execution(config=config)
import numpy as np
import pandas as pd
import voxelmorph as vxm
from voxelmorph.tf.layers import SpatialTransformer
import ddmr.utils.constants as C
from ddmr.utils.operators import min_max_norm, safe_medpy_metric
from ddmr.utils.nifti_utils import save_nifti
from ddmr.layers import AugmentationLayer, UncertaintyWeighting
from ddmr.losses import StructuralSimilarity_simplified, NCC, GeneralizedDICEScore, HausdorffDistanceErosion, target_registration_error
from ddmr.ms_ssim_tf import MultiScaleStructuralSimilarity
from ddmr.utils.acummulated_optimizer import AdamAccumulated
from ddmr.utils.visualization import save_disp_map_img, plot_predictions
from ddmr.utils.misc import DisplacementMapInterpolator, get_segmentations_centroids, segmentation_ohe_to_cardinal, segmentation_cardinal_to_ohe
from ddmr.utils.misc import resize_displacement_map, scale_transformation, GaussianFilter
import medpy.metric as medpy_metrics
from EvaluationScripts.Evaluate_class import EvaluationFigures, resize_pts_to_original_space, resize_img_to_original_space, resize_transformation
from scipy.interpolate import RegularGridInterpolator
from tqdm import tqdm
from scipy.ndimage import gaussian_filter, zoom
import h5py
import re
from Brain_study.data_generator import BatchGenerator
import argparse
from skimage.transform import warp
import neurite as ne
# from tkinter import filedialog as fd
DATASET = '/mnt/EncryptedData1/Users/javier/ext_datasets/COMET_dataset/OSLO_COMET_CT/Formatted_128x128x128/test_fixed'
DATASET_FR = '/mnt/EncryptedData1/Users/javier/ext_datasets/COMET_dataset/OSLO_COMET_CT/Formatted_128x128x128/test_fixed/full_res'
MODEL_FILE = '/mnt/EncryptedData1/Users/javier/train_output/COMET/ERASE/COMET_L_ssim__MET_mse_ncc_ssim_141343-01122021/checkpoints/best_model.h5'
DATA_ROOT_DIR = '/mnt/EncryptedData1/Users/javier/train_output/COMET/ERASE/COMET_L_ssim__MET_mse_ncc_ssim_141343-01122021/'
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model', nargs='+', type=str, help='.h5 of the model', default=None)
parser.add_argument('-d', '--dir', nargs='+', type=str, help='Directory where ./checkpoints/best_model.h5 is located', default=None)
parser.add_argument('--gpu', type=int, help='GPU', default=0)
parser.add_argument('--dataset', type=str, help='Dataset to run predictions on', default=DATASET)
parser.add_argument('--erase', type=bool, help='Erase the content of the output folder', default=False)
parser.add_argument('--outdirname', type=str, default='Evaluate')
parser.add_argument('--fullres', action='store_true', default=False)
parser.add_argument('--savenifti', type=bool, default=True)
args = parser.parse_args()
if args.model is not None:
assert '.h5' in args.model[0], 'No checkpoint file provided, use -d/--dir instead'
MODEL_FILE_LIST = args.model
DATA_ROOT_DIR_LIST = [os.path.split(model_path)[0] for model_path in args.model]
elif args.dir is not None:
assert '.h5' not in args.dir[0], 'Provided checkpoint file, user -m/--model instead'
MODEL_FILE_LIST = [os.path.join(dir_path, 'checkpoints', 'best_model.h5') for dir_path in args.dir]
DATA_ROOT_DIR_LIST = args.dir
else:
# try:
# MODEL_FILE_LIST = fd.askopenfilenames(title='Select .h model file',
# initialdir='/mnt/EncryptedData1/Users/javier/train_output/COMET',
# filetypes=(('Model', '*.h5'),))
# if len(MODEL_FILE_LIST):
# DATA_ROOT_DIR_LIST = [os.path.split(model_path)[0] for model_path in MODEL_FILE_LIST]
# else:
# raise ValueError('No model selected')
# except tkinter.TclError as e:
# raise ValueError('Cannot launch TkInter file explorer. User the -m or -d arguments')
pass
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) # Check availability before running using 'nvidia-smi'
DATASET = args.dataset
list_test_files = [os.path.join(DATASET, f) for f in os.listdir(DATASET) if f.endswith('h5') and 'dm' not in f]
list_test_files.sort()
if args.fullres:
list_test_fr_files = [os.path.join(DATASET_FR, f) for f in os.listdir(DATASET_FR) if f.endswith('h5') and 'dm' not in f]
list_test_fr_files.sort()
with h5py.File(list_test_files[0], 'r') as f:
image_input_shape = image_output_shape = list(f['fix_image'][:].shape[:-1])
nb_labels = f['fix_segmentations'][:].shape[-1] - 1 # Skip background label
# Header of the metrics csv file
csv_header = ['File', 'SSIM', 'MS-SSIM', 'NCC', 'MSE', 'DICE', 'DICE_MACRO', 'HD', 'HD95', 'Time', 'TRE', 'No_missing_lbls', 'Missing_lbls']
# TF stuff
config = tf.compat.v1.ConfigProto() # device_count={'GPU':0})
config.gpu_options.allow_growth = True
config.log_device_placement = False ## to log device placement (on which device the operation ran)
config.allow_soft_placement = True
sess = tf.compat.v1.Session(config=config)
tf.compat.v1.keras.backend.set_session(sess)
# Loss and metric functions. Common to all models
loss_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).loss,
NCC(image_input_shape).loss,
vxm.losses.MSE().loss,
MultiScaleStructuralSimilarity(max_val=1., filter_size=3).loss]
metric_fncs = [StructuralSimilarity_simplified(patch_size=2, dim=3, dynamic_range=1.).metric,
NCC(image_input_shape).metric,
vxm.losses.MSE().loss,
MultiScaleStructuralSimilarity(max_val=1., filter_size=3).metric,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric,
HausdorffDistanceErosion(3, 10, im_shape=image_output_shape + [nb_labels]).metric,
GeneralizedDICEScore(image_output_shape + [nb_labels], num_labels=nb_labels).metric_macro]
### METRICS GRAPH ###
fix_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='fix_img')
pred_img_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, 1), name='pred_img')
fix_seg_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, nb_labels), name='fix_seg')
pred_seg_ph = tf.compat.v1.placeholder(tf.float32, (1, None, None, None, nb_labels), name='pred_seg')
ssim_tf = metric_fncs[0](fix_img_ph, pred_img_ph)
ncc_tf = metric_fncs[1](fix_img_ph, pred_img_ph)
mse_tf = metric_fncs[2](fix_img_ph, pred_img_ph)
ms_ssim_tf = metric_fncs[3](fix_img_ph, pred_img_ph)
# dice_tf = metric_fncs[4](fix_seg_ph, pred_seg_ph)
# hd_tf = metric_fncs[5](fix_seg_ph, pred_seg_ph)
# dice_macro_tf = metric_fncs[6](fix_seg_ph, pred_seg_ph)
# hd_exact_tf = HausdorffDistance_exact(fix_seg_ph, pred_seg_ph, ohe=True)
# Needed for VxmDense type of network
warp_segmentation = vxm.networks.Transform(image_output_shape, interp_method='nearest', nb_feats=nb_labels)
dm_interp = DisplacementMapInterpolator(image_output_shape, 'griddata', step=4)
for MODEL_FILE, DATA_ROOT_DIR in zip(MODEL_FILE_LIST, DATA_ROOT_DIR_LIST):
print('MODEL LOCATION: ', MODEL_FILE)
# data_folder = '/mnt/EncryptedData1/Users/javier/train_output/DDMR/THESIS/BASELINE_Affine_ncc___mse_ncc_160606-25022021'
output_folder = os.path.join(DATA_ROOT_DIR, args.outdirname) # '/mnt/EncryptedData1/Users/javier/train_output/DDMR/THESIS/eval/BASELINE_TRAIN_Affine_ncc_EVAL_Affine'
# os.makedirs(os.path.join(output_folder, 'images'), exist_ok=True)
if args.erase:
shutil.rmtree(output_folder, ignore_errors=True)
os.makedirs(output_folder, exist_ok=True)
print('DESTINATION FOLDER: ', output_folder)
if args.fullres:
output_folder_fr = os.path.join(DATA_ROOT_DIR, args.outdirname, 'full_resolution') # '/mnt/EncryptedData1/Users/javier/train_output/DDMR/THESIS/eval/BASELINE_TRAIN_Affine_ncc_EVAL_Affine'
# os.makedirs(os.path.join(output_folder, 'images'), exist_ok=True)
if args.erase:
shutil.rmtree(output_folder_fr, ignore_errors=True)
os.makedirs(output_folder_fr, exist_ok=True)
print('DESTINATION FOLDER FULL RESOLUTION: ', output_folder_fr)
try:
network = tf.keras.models.load_model(MODEL_FILE, {#'VxmDenseSemiSupervisedSeg': vxm.networks.VxmDenseSemiSupervisedSeg,
'VxmDense': vxm.networks.VxmDense,
'AdamAccumulated': AdamAccumulated,
'loss': loss_fncs,
'metric': metric_fncs},
compile=False)
except ValueError as e:
enc_features = [32, 64, 128, 256, 512, 1024] # const.ENCODER_FILTERS
dec_features = enc_features[::-1] + [16, 16] # const.ENCODER_FILTERS[::-1]
nb_features = [enc_features, dec_features]
if False: #re.search('^UW|SEGGUIDED_', MODEL_FILE):
network = vxm.networks.VxmDenseSemiSupervisedSeg(inshape=image_output_shape,
nb_labels=nb_labels,
nb_unet_features=nb_features,
int_steps=0,
int_downsize=1,
seg_downsize=1)
else:
# only load the weights into the same model. To get the same runtime
network = vxm.networks.VxmDense(inshape=image_output_shape,
nb_unet_features=nb_features,
int_steps=0)
network.load_weights(MODEL_FILE, by_name=True)
# Record metrics
metrics_file = os.path.join(output_folder, 'metrics.csv')
with open(metrics_file, 'w') as f:
f.write(';'.join(csv_header)+'\n')
if args.fullres:
metrics_file_fr = os.path.join(output_folder_fr, 'metrics.csv')
with open(metrics_file_fr, 'w') as f:
f.write(';'.join(csv_header) + '\n')
ssim = ncc = mse = ms_ssim = dice = hd = 0
with sess.as_default():
sess.run(tf.global_variables_initializer())
network.load_weights(MODEL_FILE, by_name=True)
network.summary(line_length=C.SUMMARY_LINE_LENGTH)
progress_bar = tqdm(enumerate(list_test_files, 1), desc='Evaluation', total=len(list_test_files))
for step, in_batch in progress_bar:
with h5py.File(in_batch, 'r') as f:
fix_img = f['fix_image'][:][np.newaxis, ...] # Add batch axis
mov_img = f['mov_image'][:][np.newaxis, ...]
fix_seg = f['fix_segmentations'][..., 1:][np.newaxis, ...].astype(np.float32)
mov_seg = f['mov_segmentations'][..., 1:][np.newaxis, ...].astype(np.float32)
fix_centroids = f['fix_centroids'][1:, ...]
isotropic_shape = f['isotropic_shape'][:]
voxel_size = np.divide(fix_img.shape[1:-1], isotropic_shape)
if network.name == 'vxm_dense_semi_supervised_seg':
t0 = time.time()
pred_img, disp_map, pred_seg = network.predict([mov_img, fix_img, mov_seg, fix_seg]) # predict([source, target])
t1 = time.time()
else:
t0 = time.time()
pred_img, disp_map = network.predict([mov_img, fix_img])
pred_seg = warp_segmentation.predict([mov_seg, disp_map])
t1 = time.time()
pred_img = min_max_norm(pred_img)
mov_centroids, missing_lbls = get_segmentations_centroids(mov_seg[0, ...], ohe=True, expected_lbls=range(1, nb_labels+1), brain_study=False)
# pred_centroids = dm_interp(disp_map, mov_centroids, backwards=True) # with tps, it returns the pred_centroids directly
pred_centroids = dm_interp(disp_map, mov_centroids, backwards=True) + mov_centroids
# Up sample the segmentation masks to isotropic resolution
zoom_factors = np.diag(scale_transformation(image_output_shape, isotropic_shape))
pred_seg_isot = zoom(pred_seg[0, ...], zoom_factors, order=0)[np.newaxis, ...]
fix_seg_isot = zoom(fix_seg[0, ...], zoom_factors, order=0)[np.newaxis, ...]
pred_img_isot = zoom(pred_img[0, ...], zoom_factors, order=3)[np.newaxis, ...]
fix_img_isot = zoom(fix_img[0, ...], zoom_factors, order=3)[np.newaxis, ...]
# I need the labels to be OHE to compute the segmentation metrics.
# dice, hd, dice_macro = sess.run([dice_tf, hd_tf, dice_macro_tf], {'fix_seg:0': fix_seg, 'pred_seg:0': pred_seg})
dice = np.mean([medpy_metrics.dc(pred_seg_isot[0, ..., l], fix_seg_isot[0, ..., l]) / np.sum(fix_seg_isot[0, ..., l]) for l in range(nb_labels)])
hd = np.mean(safe_medpy_metric(pred_seg_isot[0, ...], fix_seg_isot[0, ...], nb_labels, medpy_metrics.hd, {'voxelspacing': voxel_size}))
hd95 = np.mean(safe_medpy_metric(pred_seg_isot[0, ...], fix_seg_isot[0, ...], nb_labels, medpy_metrics.hd95, {'voxelspacing': voxel_size}))
dice_macro = np.mean([medpy_metrics.dc(pred_seg_isot[0, ..., l], fix_seg_isot[0, ..., l]) for l in range(nb_labels)])
pred_seg_card = segmentation_ohe_to_cardinal(pred_seg).astype(np.float32)
mov_seg_card = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
fix_seg_card = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf], {'fix_img:0': fix_img, 'pred_img:0': pred_img})
ssim = np.mean(ssim)
ms_ssim = ms_ssim[0]
# Rescale the points back to isotropic space, where we have a correspondence voxel <-> mm
fix_centroids_isotropic = fix_centroids * voxel_size
# mov_centroids_isotropic = mov_centroids * voxel_size
pred_centroids_isotropic = pred_centroids * voxel_size
# fix_centroids_isotropic = np.divide(fix_centroids_isotropic, C.COMET_DATASET_iso_to_cubic_scales)
# # mov_centroids_isotropic = np.divide(mov_centroids_isotropic, C.COMET_DATASET_iso_to_cubic_scales)
# pred_centroids_isotropic = np.divide(pred_centroids_isotropic, C.COMET_DATASET_iso_to_cubic_scales)
# Now we can measure the TRE in mm
tre_array = target_registration_error(fix_centroids_isotropic, pred_centroids_isotropic, False).eval()
tre = np.mean([v for v in tre_array if not np.isnan(v)])
# ['File', 'SSIM', 'MS-SSIM', 'NCC', 'MSE', 'DICE', 'HD', 'Time', 'TRE', 'No_missing_lbls', 'Missing_lbls']
new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, hd95, t1-t0, tre, len(missing_lbls), missing_lbls]
with open(metrics_file, 'a') as f:
f.write(';'.join(map(str, new_line))+'\n')
save_nifti(fix_img[0, ...], os.path.join(output_folder, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(mov_img[0, ...], os.path.join(output_folder, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(pred_img[0, ...], os.path.join(output_folder, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(fix_seg_card[0, ...], os.path.join(output_folder, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(mov_seg_card[0, ...], os.path.join(output_folder, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(pred_seg_card[0, ...], os.path.join(output_folder, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
# with h5py.File(os.path.join(output_folder, '{:03d}_centroids.h5'.format(step)), 'w') as f:
# f.create_dataset('fix_centroids', dtype=np.float32, data=fix_centroids)
# f.create_dataset('mov_centroids', dtype=np.float32, data=mov_centroids)
# f.create_dataset('pred_centroids', dtype=np.float32, data=pred_centroids)
# f.create_dataset('fix_centroids_isotropic', dtype=np.float32, data=fix_centroids_isotropic)
# f.create_dataset('mov_centroids_isotropic', dtype=np.float32, data=mov_centroids_isotropic)
# magnitude = np.sqrt(np.sum(disp_map[0, ...] ** 2, axis=-1))
# _ = plt.hist(magnitude.flatten())
# plt.title('Histogram of disp. magnitudes')
# plt.show(block=False)
# plt.savefig(os.path.join(output_folder, '{:03d}_hist_mag_ssim_{:.03f}_dice_{:.03f}.png'.format(step, ssim, dice)))
# plt.close()
plot_predictions(img_batches=[fix_img, mov_img, pred_img], disp_map_batch=disp_map, seg_batches=[fix_seg_card, mov_seg_card, pred_seg_card], filename=os.path.join(output_folder, '{:03d}_figures_seg.png'.format(step)), show=False, step=16)
plot_predictions(img_batches=[fix_img, mov_img, pred_img], disp_map_batch=disp_map, filename=os.path.join(output_folder, '{:03d}_figures_img.png'.format(step)), show=False, step=16)
save_disp_map_img(disp_map, 'Displacement map', os.path.join(output_folder, '{:03d}_disp_map_fig.png'.format(step)), show=False, step=16)
progress_bar.set_description('SSIM {:.04f}\tM_DICE: {:.04f}'.format(ssim, dice_macro))
if args.fullres:
with h5py.File(list_test_fr_files[step - 1], 'r') as f:
fix_img = f['fix_image'][:][np.newaxis, ...] # Add batch axis
mov_img = f['mov_image'][:][np.newaxis, ...]
fix_seg = f['fix_segmentations'][:][np.newaxis, ...].astype(np.float32)
mov_seg = f['mov_segmentations'][:][np.newaxis, ...].astype(np.float32)
fix_centroids = f['fix_centroids'][:]
# Up sample the displacement map to the full res
trf = scale_transformation(image_output_shape, fix_img.shape[1:-1])
disp_map_fr = resize_displacement_map(np.squeeze(disp_map), None, trf)[np.newaxis, ...]
disp_map_fr = gaussian_filter(disp_map_fr, 5)
# disp_mad_fr = sess.run(smooth_filter, feed_dict={'dm:0': disp_map_fr})
# Predicted image
pred_img_fr = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([mov_img, disp_map_fr]).eval()
pred_seg_fr = SpatialTransformer(interp_method='nearest', indexing='ij', single_transform=False)([mov_seg, disp_map_fr]).eval()
# Predicted centroids
dm_interp_fr = DisplacementMapInterpolator(fix_img.shape[1:-1], 'griddata', step=2)
pred_centroids = dm_interp_fr(disp_map_fr, mov_centroids, backwards=True) + mov_centroids
# Metrics - segmentation
dice = np.mean([medpy_metrics.dc(pred_seg_fr[..., l], fix_seg[..., l]) / np.sum(fix_seg[..., l]) for l in range(nb_labels)])
hd = np.mean(safe_medpy_metric(pred_seg[0, ...], fix_seg[0, ...], nb_labels, medpy_metrics.hd, {'voxelspacing': voxel_size}))
dice_macro = np.mean([medpy_metrics.dc(pred_seg_fr[..., l], fix_seg[..., l]) for l in range(nb_labels)])
pred_seg_card_fr = segmentation_ohe_to_cardinal(pred_seg_fr).astype(np.float32)
mov_seg_card_fr = segmentation_ohe_to_cardinal(mov_seg).astype(np.float32)
fix_seg_card_fr = segmentation_ohe_to_cardinal(fix_seg).astype(np.float32)
# Metrics - image
ssim, ncc, mse, ms_ssim = sess.run([ssim_tf, ncc_tf, mse_tf, ms_ssim_tf],
{'fix_img:0': fix_img, 'pred_img:0': pred_img_fr})
ssim = np.mean(ssim)
ms_ssim = ms_ssim[0]
# Metrics - registration
tre_array = target_registration_error(fix_centroids, pred_centroids, False).eval()
new_line = [step, ssim, ms_ssim, ncc, mse, dice, dice_macro, hd, t1 - t0, tre, len(missing_lbls),
missing_lbls]
with open(metrics_file_fr, 'a') as f:
f.write(';'.join(map(str, new_line)) + '\n')
if args.savenifti:
save_nifti(fix_img[0, ...], os.path.join(output_folder_fr, '{:03d}_fix_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(mov_img[0, ...], os.path.join(output_folder_fr, '{:03d}_mov_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(pred_img[0, ...], os.path.join(output_folder_fr, '{:03d}_pred_img_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(fix_seg_card[0, ...], os.path.join(output_folder_fr, '{:03d}_fix_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(mov_seg_card[0, ...], os.path.join(output_folder_fr, '{:03d}_mov_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
save_nifti(pred_seg_card[0, ...], os.path.join(output_folder_fr, '{:03d}_pred_seg_ssim_{:.03f}_dice_{:.03f}.nii.gz'.format(step, ssim, dice)), verbose=False)
# with h5py.File(os.path.join(output_folder, '{:03d}_centroids.h5'.format(step)), 'w') as f:
# f.create_dataset('fix_centroids', dtype=np.float32, data=fix_centroids)
# f.create_dataset('mov_centroids', dtype=np.float32, data=mov_centroids)
# f.create_dataset('pred_centroids', dtype=np.float32, data=pred_centroids)
# f.create_dataset('fix_centroids_isotropic', dtype=np.float32, data=fix_centroids_isotropic)
# f.create_dataset('mov_centroids_isotropic', dtype=np.float32, data=mov_centroids_isotropic)
# magnitude = np.sqrt(np.sum(disp_map[0, ...] ** 2, axis=-1))
# _ = plt.hist(magnitude.flatten())
# plt.title('Histogram of disp. magnitudes')
# plt.show(block=False)
# plt.savefig(os.path.join(output_folder, '{:03d}_hist_mag_ssim_{:.03f}_dice_{:.03f}.png'.format(step, ssim, dice)))
# plt.close()
plot_predictions(img_batches=[fix_img, mov_img, pred_img_fr], disp_map_batch=disp_map_fr, seg_batches=[fix_seg_card_fr, mov_seg_card_fr, pred_seg_card_fr], filename=os.path.join(output_folder_fr, '{:03d}_figures_seg.png'.format(step)), show=False, step=10)
plot_predictions(img_batches=[fix_img, mov_img, pred_img_fr], disp_map_batch=disp_map_fr, filename=os.path.join(output_folder_fr, '{:03d}_figures_img.png'.format(step)), show=False, step=10)
# save_disp_map_img(disp_map_fr, 'Displacement map', os.path.join(output_folder_fr, '{:03d}_disp_map_fig.png'.format(step)), show=False, step=10)
progress_bar.set_description('[FR] SSIM {:.04f}\tM_DICE: {:.04f}'.format(ssim, dice_macro))
print('Summary\n=======\n')
metrics_df = pd.read_csv(metrics_file, sep=';', header=0)
print('\nAVG:\n')
print(metrics_df.mean(axis=0))
print('\nSTD:\n')
print(metrics_df.std(axis=0))
print('\nHD95perc:\n')
print(metrics_df['HD'].describe(percentiles=[.95]))
print('\n=======\n')
if args.fullres:
print('Summary full resolution\n=======\n')
metrics_df = pd.read_csv(metrics_file_fr, sep=';', header=0)
print('\nAVG:\n')
print(metrics_df.mean(axis=0))
print('\nSTD:\n')
print(metrics_df.std(axis=0))
print('\nHD95perc:\n')
print(metrics_df['HD'].describe(percentiles=[.95]))
print('\n=======\n')
tf.keras.backend.clear_session()
# sess.close()
del network
print('Done')
|