File size: 36,918 Bytes
ab9857f
 
 
 
 
 
74c6a32
 
 
 
 
ab9857f
a27d55f
 
 
74c6a32
ab9857f
 
 
ca253db
 
 
ab9857f
 
 
 
 
 
 
 
 
 
 
 
ca253db
 
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca253db
 
 
 
 
 
 
 
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca253db
 
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca253db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
ab9857f
 
ca253db
ab9857f
 
 
 
ca253db
 
 
 
ab9857f
74c6a32
 
 
 
 
 
 
 
ab9857f
 
 
 
 
 
 
ca253db
 
 
 
74c6a32
ca253db
 
 
 
 
74c6a32
ca253db
74c6a32
ca253db
 
 
 
 
ab9857f
 
 
 
 
 
 
74c6a32
 
 
 
 
ab9857f
74c6a32
 
ab9857f
74c6a32
 
ca253db
74c6a32
ca253db
74c6a32
 
ca253db
ab9857f
 
 
ca253db
 
 
 
 
ab9857f
ca253db
 
ab9857f
74c6a32
 
ab9857f
ca253db
ab9857f
74c6a32
 
 
ab9857f
ca253db
ab9857f
 
 
ca253db
 
ab9857f
ca253db
 
ab9857f
ca253db
 
ab9857f
ca253db
 
ab9857f
ca253db
ab9857f
74c6a32
 
 
ca253db
 
 
 
 
 
 
 
 
 
 
 
74c6a32
 
ca253db
 
 
 
 
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca253db
 
 
 
 
 
ab9857f
ca253db
ab9857f
 
 
ca253db
 
 
 
 
ab9857f
 
 
 
 
 
 
 
 
 
 
ca253db
ab9857f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
import numpy as np
from tensorflow import keras
import os
import h5py
import random
from PIL import Image
import nibabel as nib
from nilearn.image import resample_img
from skimage.exposure import equalize_adapthist
from scipy.ndimage import zoom
import tensorflow as tf

import ddmr.utils.constants as C
from ddmr.utils.operators import min_max_norm
from ddmr.utils.thin_plate_splines import ThinPlateSplines
from voxelmorph.tf.layers import SpatialTransformer


class DataGeneratorManager(keras.utils.Sequence):
    def __init__(self, dataset_path, batch_size=32, shuffle=True,
                 num_samples=None, validation_split=None, validation_samples=None, clip_range=[0., 1.],
                 input_labels=[C.H5_MOV_IMG, C.H5_FIX_IMG], output_labels=[C.H5_FIX_IMG, 'zero_gradient']):
        # Get the list of files
        self.__list_files = self.__get_dataset_files(dataset_path)
        self.__list_files.sort()
        self.__dataset_path = dataset_path
        self.__shuffle = shuffle
        self.__total_samples = len(self.__list_files)
        self.__validation_split = validation_split
        self.__clip_range = clip_range
        self.__batch_size = batch_size

        self.__validation_samples = validation_samples

        self.__input_labels = input_labels
        self.__output_labels = output_labels

        if num_samples is not None:
            self.__num_samples = self.__total_samples if num_samples > self.__total_samples else num_samples
        else:
            self.__num_samples = self.__total_samples

        self.__internal_idxs = np.arange(self.__num_samples)

        # Split it accordingly
        if validation_split is None:
            self.__validation_num_samples = None
            self.__validation_idxs = list()
            if self.__shuffle:
                random.shuffle(self.__internal_idxs)
            self.__training_idxs = self.__internal_idxs

            self.__validation_generator = None
        else:
            self.__validation_num_samples = int(np.ceil(self.__num_samples * validation_split))
            if self.__shuffle:
                self.__validation_idxs = np.random.choice(self.__internal_idxs, self.__validation_num_samples)
            else:
                self.__validation_idxs = self.__internal_idxs[0: self.__validation_num_samples]
            self.__training_idxs = np.asarray([idx for idx in self.__internal_idxs if idx not in self.__validation_idxs])
            # Build them DataGenerators
            self.__validation_generator = DataGenerator(self, 'validation')

        self.__train_generator = DataGenerator(self, 'train')
        self.reshuffle_indices()

    @property
    def dataset_path(self):
        return self.__dataset_path

    @property
    def dataset_list_files(self):
        return self.__list_files

    @property
    def train_idxs(self):
        return self.__training_idxs

    @property
    def validation_idxs(self):
        return self.__validation_idxs

    @property
    def batch_size(self):
        return self.__batch_size

    @property
    def clip_rage(self):
        return self.__clip_range

    @property
    def shuffle(self):
        return self.__shuffle

    @property
    def input_labels(self):
        return self.__input_labels

    @property
    def output_labels(self):
        return self.__output_labels

    def get_generator_idxs(self, generator_type):
        if generator_type == 'train':
            return self.train_idxs
        elif generator_type == 'validation':
            return self.validation_idxs
        else:
            raise ValueError('Invalid generator type: ', generator_type)

    @staticmethod
    def __get_dataset_files(search_path):
        """
        Get the path to the dataset files
        :param  search_path: dir path to search for the hd5 files
        :return:
        """
        file_list = list()
        for root, dirs, files in os.walk(search_path):
            file_list.sort()
            for data_file in files:
                file_name, extension = os.path.splitext(data_file)
                if extension.lower() == '.hd5' or '.h5':
                    file_list.append(os.path.join(root, data_file))

        if not file_list:
            raise ValueError('No files found to train in ', search_path)

        print('Found {} files in {}'.format(len(file_list), search_path))
        return file_list

    def reshuffle_indices(self):
        if self.__validation_num_samples is None:
            if self.__shuffle:
                random.shuffle(self.__internal_idxs)
            self.__training_idxs = self.__internal_idxs
        else:
            if self.__shuffle:
                self.__validation_idxs = np.random.choice(self.__internal_idxs, self.__validation_num_samples)
            else:
                self.__validation_idxs = self.__internal_idxs[0: self.__validation_num_samples]
            self.__training_idxs = np.asarray([idx for idx in self.__internal_idxs if idx not in self.__validation_idxs])

            # Update the indices
            self.__validation_generator.update_samples(self.__validation_idxs)

        self.__train_generator.update_samples(self.__training_idxs)

    def get_generator(self, type='train'):
        if type.lower() == 'train':
            return self.__train_generator
        elif type.lower() == 'validation':
            if self.__validation_generator is not None:
                return self.__validation_generator
            else:
                raise Warning('No validation generator available. Set a non-zero validation_split to build one.')
        else:
            raise ValueError('Unknown dataset type "{}". Expected "train" or "validation"'.format(type))


class DataGenerator(DataGeneratorManager):
    def __init__(self, GeneratorManager: DataGeneratorManager, dataset_type='train'):
        self.__complete_list_files = GeneratorManager.dataset_list_files
        self.__list_files = [self.__complete_list_files[idx] for idx in GeneratorManager.get_generator_idxs(dataset_type)]
        self.__batch_size = GeneratorManager.batch_size
        self.__total_samples = len(self.__list_files)
        self.__clip_range = GeneratorManager.clip_rage
        self.__manager = GeneratorManager
        self.__shuffle = GeneratorManager.shuffle

        self.__num_samples = len(self.__list_files)
        self.__internal_idxs = np.arange(self.__num_samples)
        # These indices are internal to the generator, they are not the same as the dataset_idxs!!

        self.__dataset_type = dataset_type

        self.__last_batch = 0
        self.__batches_per_epoch = int(np.floor(len(self.__internal_idxs) / self.__batch_size))

        self.__input_labels = GeneratorManager.input_labels
        self.__output_labels = GeneratorManager.output_labels

    @staticmethod
    def __get_dataset_files(search_path):
        """
        Get the path to the dataset files
        :param  search_path: dir path to search for the hd5 files
        :return:
        """
        file_list = list()
        for root, dirs, files in os.walk(search_path):
            for data_file in files:
                file_name, extension = os.path.splitext(data_file)
                if extension.lower() == '.hd5':
                    file_list.append(os.path.join(root, data_file))

        if not file_list:
            raise ValueError('No files found to train in ', search_path)

        print('Found {} files in {}'.format(len(file_list), search_path))
        return file_list

    def update_samples(self, new_sample_idxs):
        self.__list_files = [self.__complete_list_files[idx] for idx in new_sample_idxs]
        self.__num_samples = len(self.__list_files)
        self.__internal_idxs = np.arange(self.__num_samples)

    def on_epoch_end(self):
        """
        To be executed at the end of each epoch. Reshuffle the assigned samples
        :return:
        """
        if self.__shuffle:
            random.shuffle(self.__internal_idxs)
        self.__last_batch = 0

    def __len__(self):
        """
        Number of batches per epoch
        :return:
        """
        return self.__batches_per_epoch

    @staticmethod
    def __build_list(data_dict, labels):
        ret_list = list()
        for label in labels:
            if label in data_dict.keys():
                if label in [C.DG_LBL_FIX_IMG, C.DG_LBL_MOV_IMG]:
                    ret_list.append(min_max_norm(data_dict[label]).astype(np.float32))
                elif label in [C.DG_LBL_FIX_PARENCHYMA, C.DG_LBL_FIX_VESSELS, C.DG_LBL_FIX_TUMOR,
                               C.DG_LBL_MOV_PARENCHYMA, C.DG_LBL_MOV_VESSELS, C.DG_LBL_MOV_TUMOR]:
                    aux = data_dict[label]
                    aux[aux > 0.] = 1.
                    ret_list.append(aux)
            elif label == C.DG_LBL_ZERO_GRADS:
                ret_list.append(np.zeros([data_dict['BATCH_SIZE'], *C.DISP_MAP_SHAPE]))
        return ret_list

    def __getitem1(self, index):
        idxs = self.__internal_idxs[index * self.__batch_size:(index + 1) * self.__batch_size]

        data_dict = self.__load_data(idxs)

        # https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
        # A generator or keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample_weights)
        # The second element must match the outputs of the model, in this case (image, displacement map)
        inputs = self.__build_list(data_dict, self.__input_labels)
        outputs = self.__build_list(data_dict, self.__output_labels)

        return (inputs, outputs)

    def __getitem__(self, index):
        """
        Generate one batch of data
        :param index: epoch index
        :return:
        """
        return self.__getitem2(index)

    def next_batch(self):
        if self.__last_batch > self.__batches_per_epoch:
            raise ValueError('No more batches for this epoch')
        batch = self.__getitem__(self.__last_batch)
        self.__last_batch += 1
        return batch

    def __try_load(self, data_file, label, append_array=None):
        if label in self.__input_labels or label in self.__output_labels:
            # To avoid extra overhead
            try:
                retVal = data_file[label][:][np.newaxis, ...]
            except KeyError:
                # That particular label is not found in the file. But this should be known by the user by now
                retVal = None

            if append_array is not None and retVal is not None:
                return np.append(append_array, retVal, axis=0)
            elif append_array is None:
                return retVal
            else:
                return retVal  # None
        else:
            return None

    def __load_data(self, idx_list):
        """
        Build the batch with the samples in idx_list
        :param idx_list:
        :return:
        """
        if isinstance(idx_list, (list, np.ndarray)):
            fix_img = np.empty((0, ) + C.IMG_SHAPE, np.float32)
            mov_img = np.empty((0, ) + C.IMG_SHAPE, np.float32)

            fix_parench = np.empty((0, ) + C.IMG_SHAPE, np.float32)
            mov_parench = np.empty((0, ) + C.IMG_SHAPE, np.float32)

            fix_vessels = np.empty((0, ) + C.IMG_SHAPE, np.float32)
            mov_vessels = np.empty((0, ) + C.IMG_SHAPE, np.float32)

            fix_tumors = np.empty((0, ) + C.IMG_SHAPE, np.float32)
            mov_tumors = np.empty((0, ) + C.IMG_SHAPE, np.float32)

            disp_map = np.empty((0, ) + C.DISP_MAP_SHAPE, np.float32)

            fix_centroid = np.empty((0, 3))
            mov_centroid = np.empty((0, 3))

            for idx in idx_list:
                data_file = h5py.File(self.__list_files[idx], 'r')

                fix_img = self.__try_load(data_file, C.H5_FIX_IMG, fix_img)
                mov_img = self.__try_load(data_file, C.H5_MOV_IMG, mov_img)

                fix_parench = self.__try_load(data_file, C.H5_FIX_PARENCHYMA_MASK, fix_parench)
                mov_parench = self.__try_load(data_file, C.H5_MOV_PARENCHYMA_MASK, mov_parench)

                fix_vessels = self.__try_load(data_file, C.H5_FIX_VESSELS_MASK, fix_vessels)
                mov_vessels = self.__try_load(data_file, C.H5_MOV_VESSELS_MASK, mov_vessels)

                fix_tumors = self.__try_load(data_file, C.H5_FIX_TUMORS_MASK, fix_tumors)
                mov_tumors = self.__try_load(data_file, C.H5_MOV_TUMORS_MASK, mov_tumors)

                disp_map = self.__try_load(data_file, C.H5_GT_DISP, disp_map)

                fix_centroid = self.__try_load(data_file, C.H5_FIX_CENTROID, fix_centroid)
                mov_centroid = self.__try_load(data_file, C.H5_MOV_CENTROID, mov_centroid)

                data_file.close()
            batch_size = len(idx_list)
        else:
            data_file = h5py.File(self.__list_files[idx_list], 'r')

            fix_img = self.__try_load(data_file, C.H5_FIX_IMG)
            mov_img = self.__try_load(data_file, C.H5_MOV_IMG)

            fix_parench = self.__try_load(data_file, C.H5_FIX_PARENCHYMA_MASK)
            mov_parench = self.__try_load(data_file, C.H5_MOV_PARENCHYMA_MASK)

            fix_vessels = self.__try_load(data_file, C.H5_FIX_VESSELS_MASK)
            mov_vessels = self.__try_load(data_file, C.H5_MOV_VESSELS_MASK)

            fix_tumors = self.__try_load(data_file, C.H5_FIX_TUMORS_MASK)
            mov_tumors = self.__try_load(data_file, C.H5_MOV_TUMORS_MASK)

            disp_map = self.__try_load(data_file, C.H5_GT_DISP)

            fix_centroid = self.__try_load(data_file, C.H5_FIX_CENTROID)
            mov_centroid = self.__try_load(data_file, C.H5_MOV_CENTROID)

            data_file.close()
            batch_size = 1

        data_dict = {C.H5_FIX_IMG: fix_img,
                     C.H5_FIX_TUMORS_MASK: fix_tumors,
                     C.H5_FIX_VESSELS_MASK: fix_vessels,
                     C.H5_FIX_PARENCHYMA_MASK: fix_parench,
                     C.H5_MOV_IMG: mov_img,
                     C.H5_MOV_TUMORS_MASK: mov_tumors,
                     C.H5_MOV_VESSELS_MASK: mov_vessels,
                     C.H5_MOV_PARENCHYMA_MASK: mov_parench,
                     C.H5_GT_DISP: disp_map,
                     C.H5_FIX_CENTROID: fix_centroid,
                     C.H5_MOV_CENTROID: mov_centroid,
                     'BATCH_SIZE': batch_size
                     }

        return data_dict

    @staticmethod
    def __get_data_shape(file_path, label):
        f = h5py.File(file_path, 'r')
        shape = f[label][:].shape
        f.close()
        return shape

    def __load_data_by_label(self, label, idx_list):
        if isinstance(idx_list, (list, np.ndarray)):
            data_shape = self.__get_data_shape(self.__list_files[idx_list[0]], label)
            container = np.empty((0, *data_shape), np.float32)
            # if label == C.H5_GT_DISP:
            #     container = np.empty((0, ) + C.DISP_MAP_SHAPE, np.float32)
            # elif label == C.H5_MOV_CENTROID or label == C.H5_FIX_CENTROID:
            #     container = np.empty((0, 3), np.float32)
            # else:
            #     container = np.empty((0, ) + C.IMG_SHAPE, np.float32)

            for idx in idx_list:
                data_file = h5py.File(self.__list_files[idx], 'r')
                container = self.__try_load(data_file, label, container)
                data_file.close()
        else:
            data_file = h5py.File(self.__list_files[idx_list], 'r')
            container = self.__try_load(data_file, label)
            data_file.close()

        return container

    def __build_list2(self, label_list, file_idxs):
        ret_list = list()
        for label in label_list:
            if label is C.DG_LBL_ZERO_GRADS:
                aux = np.zeros([len(file_idxs), *C.DISP_MAP_SHAPE])
            else:
                aux = self.__load_data_by_label(label, file_idxs)

                if label in [C.DG_LBL_MOV_IMG, C.DG_LBL_FIX_IMG]:
                    aux = min_max_norm(aux).astype(np.float32)
            ret_list.append(aux)
        return ret_list

    def __getitem2(self, index):
        f_indices = self.__internal_idxs[index * self.__batch_size:(index + 1) * self.__batch_size]

        return self.__build_list2(self.__input_labels, f_indices), self.__build_list2(self.__output_labels, f_indices)


    def get_samples(self, num_samples, random=False):
        if random:
            idxs = np.random.randint(0, self.__num_samples, num_samples)
        else:
            idxs = np.arange(0, num_samples)
        data_dict = self.__load_data(idxs)
        # return X, y
        return self.__build_list(data_dict, self.__input_labels), self.__build_list(data_dict, self.__output_labels)

    def get_input_shape(self):
        input_batch, _ = self.__getitem__(0)
        data_dict = self.__load_data(0)

        ret_val = data_dict[self.__input_labels[0]].shape
        ret_val = (None, ) + ret_val[1:]
        return ret_val  # const.BATCH_SHAPE_SEGM

    def who_are_you(self):
        return self.__dataset_type

    def print_datafiles(self):
        return self.__list_files


class DataGeneratorManager2D:
    FIX_IMG_H5 = 'input/1'
    MOV_IMG_H5 = 'input/0'

    def __init__(self, h5_file_list, batch_size=32, data_split=0.7, img_size=None,
                 fix_img_tag=FIX_IMG_H5, mov_img_tag=MOV_IMG_H5, multi_loss=False):
        self.__file_list = h5_file_list #h5py.File(h5_file, 'r')
        self.__batch_size = batch_size
        self.__data_split = data_split

        self.__initialize()

        self.__train_generator = DataGenerator2D(self.__train_file_list,
                                                 batch_size=self.__batch_size,
                                                 img_size=img_size,
                                                 fix_img_tag=fix_img_tag,
                                                 mov_img_tag=mov_img_tag,
                                                 multi_loss=multi_loss)
        self.__val_generator = DataGenerator2D(self.__val_file_list,
                                               batch_size=self.__batch_size,
                                               img_size=img_size,
                                               fix_img_tag=fix_img_tag,
                                               mov_img_tag=mov_img_tag,
                                               multi_loss=multi_loss)

    def __initialize(self):
        num_samples = len(self.__file_list)
        random.shuffle(self.__file_list)

        data_split = int(np.floor(num_samples * self.__data_split))
        self.__val_file_list = self.__file_list[0:data_split]
        self.__train_file_list = self.__file_list[data_split:]

    @property
    def train_generator(self):
        return self.__train_generator

    @property
    def validation_generator(self):
        return self.__val_generator


class DataGenerator2D(keras.utils.Sequence):
    FIX_IMG_H5 = 'input/1'
    MOV_IMG_H5 = 'input/0'

    def __init__(self, file_list: list, batch_size=32, img_size=None, fix_img_tag=FIX_IMG_H5, mov_img_tag=MOV_IMG_H5, multi_loss=False):
        self.__file_list = file_list  # h5py.File(h5_file, 'r')
        self.__file_list.sort()
        self.__batch_size = batch_size
        self.__idx_list = np.arange(0, len(self.__file_list))
        self.__multi_loss = multi_loss

        self.__tags = {'fix_img': fix_img_tag,
                       'mov_img': mov_img_tag}

        self.__batches_seen = 0
        self.__batches_per_epoch = 0

        self.__img_size = img_size

        self.__initialize()

    def __len__(self):
        return self.__batches_per_epoch

    def __initialize(self):
        random.shuffle(self.__idx_list)

        if self.__img_size is None:
            f = h5py.File(self.__file_list[0], 'r')
            self.input_shape = f[self.__tags['fix_img']].shape  # Already defined in super()
            f.close()
        else:
            self.input_shape = self.__img_size

        if self.__multi_loss:
            self.input_shape = (self.input_shape, (*self.input_shape[:-1], 2))

        self.__batches_per_epoch = int(np.ceil(len(self.__file_list) / self.__batch_size))

    def __load_and_preprocess(self, fh, tag):
        img = fh[tag][:]

        if (self.__img_size is not None) and (img[..., 0].shape != self.__img_size):
            im = Image.fromarray(img[..., 0])  # Can't handle the 1 channel
            img = np.array(im.resize(self.__img_size[:-1], Image.LANCZOS)).astype(np.float32)
            img = img[..., np.newaxis]

        if img.max() > 1. or img.min() < 0.:
            try:
                img = min_max_norm(img).astype(np.float32)
            except ValueError:
                print(fh, tag, img.shape)
                er_str = 'ERROR:\t[file]:\t{}\t[tag]:\t{}\t[img.shape]:\t{}\t'.format(fh, tag, img.shape)
                raise ValueError(er_str)
        return img.astype(np.float32)

    def __getitem__(self, idx):
        idxs = self.__idx_list[idx * self.__batch_size:(idx + 1) * self.__batch_size]

        fix_imgs, mov_imgs = self.__load_samples(idxs)

        zero_grad = np.zeros((*fix_imgs.shape[:-1], 2))

        inputs = [mov_imgs, fix_imgs]
        outputs = [fix_imgs, zero_grad]

        if self.__multi_loss:
            return [mov_imgs, fix_imgs, zero_grad],
        else:
            return (inputs, outputs)

    def __load_samples(self, idx_list):
        if self.__multi_loss:
            img_shape = (0, *self.input_shape[0])
        else:
            img_shape = (0, *self.input_shape)

        fix_imgs = np.empty(img_shape)
        mov_imgs = np.empty(img_shape)
        for i in idx_list:
            f = h5py.File(self.__file_list[i], 'r')
            fix_imgs = np.append(fix_imgs, [self.__load_and_preprocess(f, self.__tags['fix_img'])], axis=0)
            mov_imgs = np.append(mov_imgs, [self.__load_and_preprocess(f, self.__tags['mov_img'])], axis=0)
            f.close()

        return fix_imgs, mov_imgs

    def on_epoch_end(self):
        np.random.shuffle(self.__idx_list)

    def get_single_sample(self):
        idx = random.randint(0, len(self.__idx_list))
        fix, mov = self.__load_samples([idx])
        return mov, fix


FILE_EXT = {'nifti': '.nii.gz',
            'h5': '.h5'}
CTRL_GRID = C.CoordinatesGrid()
CTRL_GRID.set_coords_grid([128]*3, [C.TPS_NUM_CTRL_PTS_PER_AXIS]*3, batches=False, norm=False, img_type=tf.float32)

FINE_GRID = C.CoordinatesGrid()
FINE_GRID.set_coords_grid([128]*3, [128]*3, batches=FINE_GRID, norm=False)

class DataGeneratorAugment(DataGeneratorManager):
    def __init__(self, GeneratorManager: DataGeneratorManager, file_type='nifti', dataset_type='train'):
        self.__complete_list_files = GeneratorManager.dataset_list_files
        self.__list_files = [self.__complete_list_files[idx] for idx in GeneratorManager.get_generator_idxs(dataset_type)]
        self.__batch_size = GeneratorManager.batch_size
        self.__augm_per_sample = 10
        self.__samples_per_batch = np.ceil(self.__batch_size / (self.__augm_per_sample + 1))  # B = S + S*A
        self.__total_samples = len(self.__list_files)
        self.__clip_range = GeneratorManager.clip_rage
        self.__manager = GeneratorManager
        self.__shuffle = GeneratorManager.shuffle
        self.__file_extension = FILE_EXT[file_type]

        self.__num_samples = len(self.__list_files)
        self.__internal_idxs = np.arange(self.__num_samples)
        # These indices are internal to the generator, they are not the same as the dataset_idxs!!

        self.__dataset_type = dataset_type

        self.__last_batch = 0
        self.__batches_per_epoch = int(np.floor(len(self.__internal_idxs) / self.__batch_size))

        self.__input_labels = GeneratorManager.input_labels
        self.__output_labels = GeneratorManager.output_labels


    def __get_dataset_files(self, search_path):
        """
        Get the path to the dataset files
        :param  search_path: dir path to search for the hd5 files
        :return:
        """
        file_list = list()
        for root, dirs, files in os.walk(search_path):
            for data_file in files:
                file_name, extension = os.path.splitext(data_file)
                if extension.lower() == self.__file_extension:
                    file_list.append(os.path.join(root, data_file))

        if not file_list:
            raise ValueError('No files found to train in ', search_path)

        print('Found {} files in {}'.format(len(file_list), search_path))
        return file_list

    def update_samples(self, new_sample_idxs):
        self.__list_files = [self.__complete_list_files[idx] for idx in new_sample_idxs]
        self.__num_samples = len(self.__list_files)
        self.__internal_idxs = np.arange(self.__num_samples)

    def on_epoch_end(self):
        """
        To be executed at the end of each epoch. Reshuffle the assigned samples
        :return:
        """
        if self.__shuffle:
            random.shuffle(self.__internal_idxs)
        self.__last_batch = 0

    def __len__(self):
        """
        Number of batches per epoch
        :return:
        """
        return self.__batches_per_epoch

    def __getitem__(self, index):
        """
        Generate one batch of data
        :param index: epoch index
        :return:
        """
        return self.__getitem(index)

    def next_batch(self):
        if self.__last_batch > self.__batches_per_epoch:
            raise ValueError('No more batches for this epoch')
        batch = self.__getitem__(self.__last_batch)
        self.__last_batch += 1
        return batch

    def __try_load(self, data_file, label, append_array=None):
        if label in self.__input_labels or label in self.__output_labels:
            # To avoid extra overhead
            try:
                retVal = data_file[label][:][np.newaxis, ...]
            except KeyError:
                # That particular label is not found in the file. But this should be known by the user by now
                retVal = None

            if append_array is not None and retVal is not None:
                return np.append(append_array, retVal, axis=0)
            elif append_array is None:
                return retVal
            else:
                return retVal  # None
        else:
            return None

    @staticmethod
    def __get_data_shape(file_path, label):
        f = h5py.File(file_path, 'r')
        shape = f[label][:].shape
        f.close()
        return shape

    def __load_data_by_label(self, label, idx_list):
        if isinstance(idx_list, (list, np.ndarray)):
            data_shape = self.__get_data_shape(self.__list_files[idx_list[0]], label)
            container = np.empty((0, *data_shape), np.float32)
            # if label == C.H5_GT_DISP:
            #     container = np.empty((0, ) + C.DISP_MAP_SHAPE, np.float32)
            # elif label == C.H5_MOV_CENTROID or label == C.H5_FIX_CENTROID:
            #     container = np.empty((0, 3), np.float32)
            # else:
            #     container = np.empty((0, ) + C.IMG_SHAPE, np.float32)

            for idx in idx_list:
                data_file = h5py.File(self.__list_files[idx], 'r')
                container = self.__try_load(data_file, label, container)
                data_file.close()
        else:
            data_file = h5py.File(self.__list_files[idx_list], 'r')
            container = self.__try_load(data_file, label)
            data_file.close()

        return container

    def __build_list(self, label_list, file_idxs):
        ret_list = list()
        for label in label_list:
            if label is C.DG_LBL_ZERO_GRADS:
                aux = np.zeros([len(file_idxs), *C.DISP_MAP_SHAPE])
            else:
                aux = self.__load_data_by_label(label, file_idxs)

                if label in [C.DG_LBL_MOV_IMG, C.DG_LBL_FIX_IMG]:
                    aux = min_max_norm(aux).astype(np.float32)
            ret_list.append(aux)
        return ret_list

    def __getitem(self, index):
        f_indices = self.__internal_idxs[index * self.__samples_per_batch:(index + 1) * self.__samples_per_batch]
        # https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
        # A generator or keras.utils.Sequence returning (inputs, targets) or (inputs, targets, sample_weights)
        # The second element must match the outputs of the model, in this case (image, displacement map)
        if 'h5' in self.__file_extension:
            return self.__build_list(self.__input_labels, f_indices), self.__build_list(self.__output_labels, f_indices)
        else:
            f_list = [self.__list_files[i] for i in f_indices]
            return self.__augment(f_list, 'fixed', C.H5_FIX_IMG), self.__augment(f_list, 'moving', C.H5_FIX_IMG)


    def __intensity_preprocessing(self, img_data):
        # Histogram normalization
        processed_img = equalize_adapthist(img_data, clip_limit=0.03)
        processed_img = min_max_norm(processed_img)

        return processed_img


    def __resize_img(self, img, output_shape):
        if isinstance(output_shape, int):
            output_shape = [output_shape] * len(img.shape)
        # Resize
        zoom_vals = np.asarray(output_shape) / np.asarray(img.shape)
        return zoom(img, zoom_vals)


    def __build_augmented_batch(self, f_list, mode):
        for f_path in f_list:
            h5_file = h5py.File(f_path, 'r')
            img_nib = nib.load(h5_file[C.H5_FIX_IMG][:])
            img_nib = resample_img(img_nib, np.eye(3))
            try:
                seg_nib = nib.load(h5_file[C.H5_FIX_SEGMENTATIONS][:])
                seg_nib = resample_img(seg_nib, np.eye(3))
            except FileNotFoundError:
                seg_nib = None

            img_nib = self.__intensity_preprocessing(img_nib)
            img_nib = self.__resize_img(img_nib, 128)








    def get_samples(self, num_samples, random=False):
        return

    def get_input_shape(self):
        input_batch, _ = self.__getitem__(0)
        data_dict = self.__load_data(0)

        ret_val = data_dict[self.__input_labels[0]].shape
        ret_val = (None, ) + ret_val[1:]
        return ret_val  # const.BATCH_SHAPE_SEGM

    def who_are_you(self):
        return self.__dataset_type

    def print_datafiles(self):
        return self.__list_files


def tf_graph_deform():
    # Place holders
    fix_img = tf.placeholder(tf.float32, [128]*3, 'fix_img')
    fix_segmentations = tf.placeholder_with_default(np.zeros([128]*3), shape=[128]*3, name='fix_segmentations')
    max_deformation = tf.placeholder(tf.float32, shape=(), name='max_deformation')
    max_displacement = tf.placeholder(tf.float32, shape=(), name='max_displacement')
    max_rotation = tf.placeholder(tf.float32, shape=(), name='max_rotation')
    num_moved_points = tf.placeholder_with_default(50, shape=(), name='num_moved_points')
    only_image = tf.placeholder_with_default(True, shape=(), name='only_image')

    search_voxels = tf.cond(only_image,
                            lambda: fix_img,
                            lambda: fix_segmentations)

    # Apply TPS deformation
    # Get points in the segmentation or image, and add it to the control grid and target grid
    # Indices of the points in the seaerch image with intensity greater than 0  (It would be bad if we only move the bg)
    idx_points_in_label = tf.where(tf.greater(search_voxels, 0.0))

    # Randomly select one of the points
    random_idx = tf.random.uniform((num_moved_points,), minval=0, maxval=tf.shape(idx_points_in_label)[0], dtype=tf.int32)

    disp_location = tf.gather_nd(idx_points_in_label, random_idx)  # And get the coordinates
    disp_location = tf.cast(disp_location, tf.float32)
    # Get the coordinates of the control point displaces
    rand_disp = tf.random.uniform((num_moved_points, 3), minval=-1, maxval=1, dtype=tf.float32) * max_deformation
    warped_location = disp_location + rand_disp

    # Add the selected locations to the control grid and the warped locations to the target grid
    control_grid = tf.concat([CTRL_GRID.grid_flat(), disp_location], axis=0)
    trg_grid = tf.concat([CTRL_GRID.grid_flat(), warped_location], axis=0)

    # Add global affine transformation
    trg_grid, aff = transform_points(trg_grid, max_displacement=max_displacement, max_rotation=max_rotation)

    tps = ThinPlateSplines(control_grid, trg_grid)
    def_grid = tps.interpolate(FINE_GRID.grid_flat())

    disp_map = FINE_GRID.grid_flat() - def_grid
    disp_map = tf.reshape(disp_map, (*FINE_GRID.shape, -1))
    # disp_map = interpn(disp_map, FULL_FINE_GRID.grid)

    # add the batch and channel dimensions
    fix_img = tf.expand_dims(tf.expand_dims(fix_img, -1), 0)
    fix_segmentations = tf.expand_dims(tf.expand_dims(fix_img, -1), 0)
    disp_map = tf.cast(tf.expand_dims(disp_map, 0), tf.float32)

    mov_img = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([fix_img, disp_map])
    mov_segmentations = SpatialTransformer(interp_method='linear', indexing='ij', single_transform=False)([fix_segmentations, disp_map])

    return tf.squeeze(mov_img),\
           tf.squeeze(mov_segmentations),\
           tf.squeeze(disp_map),\
           disp_location,\
           rand_disp,\
           aff #, w, trg_grid, def_grid


def transform_points(points: tf.Tensor, max_displacement, max_rotation):
    axis = tf.random.uniform((), 0, 3)

    alpha = tf.cond(tf.less_equal(axis, 0.),
                    lambda: tf.random.uniform((1,), -max_rotation, max_rotation),
                    lambda: tf.zeros((1,), tf.float32))
    beta = tf.cond(tf.less_equal(axis, 1.),
                   lambda: tf.random.uniform((1,), -max_rotation, max_rotation),
                   lambda: tf.zeros((1,), tf.float32))
    gamma = tf.cond(tf.less_equal(axis, 2.),
                    lambda: tf.random.uniform((1,), -max_rotation, max_rotation),
                    lambda: tf.zeros((1,), tf.float32))

    ti = tf.random.uniform((), minval=-1, maxval=1, dtype=tf.float32) * max_displacement
    tj = tf.random.uniform((), minval=-1, maxval=1, dtype=tf.float32) * max_displacement
    tk = tf.random.uniform((), minval=-1, maxval=1, dtype=tf.float32) * max_displacement

    M = build_affine_trf(tf.convert_to_tensor(FINE_GRID.shape, tf.float32), alpha, beta, gamma, ti, tj, tk)
    if points.shape.as_list()[-1] == 3:
        points = tf.transpose(points)
    new_pts = tf.matmul(M[:3, :3], points)
    new_pts = tf.expand_dims(M[:3, -1], -1) + new_pts
    return tf.transpose(new_pts), M  # Remove the last row of ones


def build_affine_trf(img_size, alpha, beta, gamma, ti, tj, tk):
    img_centre = tf.expand_dims(tf.divide(img_size, 2.), -1)

    # Rotation matrix around the image centre
    # R* = T(p) R(ang) T(-p)
    # tf.cos and tf.sin expect radians
    zero = tf.zeros((1,))
    one = tf.ones((1,))

    T = tf.convert_to_tensor([[one, zero, zero, ti],
                              [zero, one, zero, tj],
                              [zero, zero, one, tk],
                              [zero, zero, zero, one]], tf.float32)
    T = tf.squeeze(T)

    R = tf.convert_to_tensor([[tf.math.cos(gamma) * tf.math.cos(beta),
                               tf.math.cos(gamma) * tf.math.sin(beta) * tf.math.sin(alpha) - tf.math.sin(gamma) * tf.math.cos(alpha),
                               tf.math.cos(gamma) * tf.math.sin(beta) * tf.math.cos(alpha) + tf.math.sin(gamma) * tf.math.sin(alpha),
                               zero],
                              [tf.math.sin(gamma) * tf.math.cos(beta),
                               tf.math.sin(gamma) * tf.math.sin(beta) * tf.math.sin(gamma) + tf.math.cos(gamma) * tf.math.cos(alpha),
                               tf.math.sin(gamma) * tf.math.sin(beta) * tf.math.cos(gamma) - tf.math.cos(gamma) * tf.math.sin(gamma),
                               zero],
                              [-tf.math.sin(beta),
                               tf.math.cos(beta) * tf.math.sin(alpha),
                               tf.math.cos(beta) * tf.math.cos(alpha),
                               zero],
                              [zero, zero, zero, one]], tf.float32)

    R = tf.squeeze(R)

    Tc = tf.convert_to_tensor([[one, zero, zero, img_centre[0]],
                               [zero, one, zero, img_centre[1]],
                               [zero, zero, one, img_centre[2]],
                               [zero, zero, zero, one]], tf.float32)
    Tc = tf.squeeze(Tc)
    Tc_ = tf.convert_to_tensor([[one, zero, zero, -img_centre[0]],
                                [zero, one, zero, -img_centre[1]],
                                [zero, zero, one, -img_centre[2]],
                                [zero, zero, zero, one]], tf.float32)
    Tc_ = tf.squeeze(Tc_)

    return tf.matmul(T, tf.matmul(Tc, tf.matmul(R, Tc_)))