File size: 12,271 Bytes
74c6a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Polyharmonic spline interpolation."""
import tensorflow as tf
from typing import Union, List
import numpy as np
Number = Union[
float,
int,
np.float16,
np.float32,
np.float64,
np.int8,
np.int16,
np.int32,
np.int64,
np.uint8,
np.uint16,
np.uint32,
np.uint64,
]
TensorLike = Union[
List[Union[Number, list]],
tuple,
Number,
np.ndarray,
tf.Tensor,
tf.SparseTensor,
tf.Variable,
]
FloatTensorLike = Union[tf.Tensor, float, np.float16, np.float32, np.float64]
EPSILON = 0.0000000001
def _cross_squared_distance_matrix(x: TensorLike, y: TensorLike) -> tf.Tensor:
"""Pairwise squared distance between two (batch) matrices' rows (2nd dim).
Computes the pairwise distances between rows of x and rows of y.
Args:
x: `[batch_size, n, d]` float `Tensor`.
y: `[batch_size, m, d]` float `Tensor`.
Returns:
squared_dists: `[batch_size, n, m]` float `Tensor`, where
`squared_dists[b,i,j] = ||x[b,i,:] - y[b,j,:]||^2`.
"""
x_norm_squared = tf.reduce_sum(tf.square(x), 2)
y_norm_squared = tf.reduce_sum(tf.square(y), 2)
# Expand so that we can broadcast.
x_norm_squared_tile = tf.expand_dims(x_norm_squared, 2)
y_norm_squared_tile = tf.expand_dims(y_norm_squared, 1)
x_y_transpose = tf.matmul(x, y, adjoint_b=True)
# squared_dists[b,i,j] = ||x_bi - y_bj||^2 =
# x_bi'x_bi- 2x_bi'x_bj + x_bj'x_bj
squared_dists = x_norm_squared_tile - 2 * x_y_transpose + y_norm_squared_tile
return squared_dists
def _pairwise_squared_distance_matrix(x: TensorLike) -> tf.Tensor:
"""Pairwise squared distance among a (batch) matrix's rows (2nd dim).
This saves a bit of computation vs. using
`_cross_squared_distance_matrix(x, x)`
Args:
x: `[batch_size, n, d]` float `Tensor`.
Returns:
squared_dists: `[batch_size, n, n]` float `Tensor`, where
`squared_dists[b,i,j] = ||x[b,i,:] - x[b,j,:]||^2`.
"""
x_x_transpose = tf.matmul(x, x, adjoint_b=True)
x_norm_squared = tf.linalg.diag_part(x_x_transpose)
x_norm_squared_tile = tf.expand_dims(x_norm_squared, 2)
# squared_dists[b,i,j] = ||x_bi - x_bj||^2 =
# = x_bi'x_bi- 2x_bi'x_bj + x_bj'x_bj
squared_dists = (
x_norm_squared_tile
- 2 * x_x_transpose
+ tf.transpose(x_norm_squared_tile, [0, 2, 1])
)
return squared_dists
def _solve_interpolation(
train_points: TensorLike,
train_values: TensorLike,
order: int,
regularization_weight: FloatTensorLike,
) -> TensorLike:
r"""Solve for interpolation coefficients.
Computes the coefficients of the polyharmonic interpolant for the
'training' data defined by `(train_points, train_values)` using the kernel
$\phi$.
Args:
train_points: `[b, n, d]` interpolation centers.
train_values: `[b, n, k]` function values.
order: order of the interpolation.
regularization_weight: weight to place on smoothness regularization term.
Returns:
w: `[b, n, k]` weights on each interpolation center
v: `[b, d, k]` weights on each input dimension
Raises:
ValueError: if d or k is not fully specified.
"""
# These dimensions are set dynamically at runtime.
b, n, _ = tf.unstack(tf.shape(train_points), num=3)
d = train_points.shape[-1]
if d is None:
raise ValueError(
"The dimensionality of the input points (d) must be "
"statically-inferrable."
)
k = train_values.shape[-1]
if k is None:
raise ValueError(
"The dimensionality of the output values (k) must be "
"statically-inferrable."
)
# First, rename variables so that the notation (c, f, w, v, A, B, etc.)
# follows https://en.wikipedia.org/wiki/Polyharmonic_spline.
# To account for python style guidelines we use
# matrix_a for A and matrix_b for B.
c = train_points
f = train_values
# Next, construct the linear system.
with tf.name_scope("construct_linear_system"):
matrix_a = _phi(_pairwise_squared_distance_matrix(c), order) # [b, n, n]
if regularization_weight > 0:
batch_identity_matrix = tf.expand_dims(tf.eye(n, dtype=c.dtype), 0)
matrix_a += regularization_weight * batch_identity_matrix
# Append ones to the feature values for the bias term
# in the linear model.
ones = tf.ones_like(c[..., :1], dtype=c.dtype)
matrix_b = tf.concat([c, ones], 2) # [b, n, d + 1]
# [b, n + d + 1, n]
left_block = tf.concat([matrix_a, tf.transpose(matrix_b, [0, 2, 1])], 1)
num_b_cols = matrix_b.get_shape()[2] # d + 1
lhs_zeros = tf.zeros([b, num_b_cols, num_b_cols], train_points.dtype)
right_block = tf.concat([matrix_b, lhs_zeros], 1) # [b, n + d + 1, d + 1]
lhs = tf.concat([left_block, right_block], 2) # [b, n + d + 1, n + d + 1]
rhs_zeros = tf.zeros([b, d + 1, k], train_points.dtype)
rhs = tf.concat([f, rhs_zeros], 1) # [b, n + d + 1, k]
# Then, solve the linear system and unpack the results.
with tf.name_scope("solve_linear_system"):
w_v = tf.linalg.solve(lhs, rhs)
w = w_v[:, :n, :]
v = w_v[:, n:, :]
return w, v
def _apply_interpolation(
query_points: TensorLike,
train_points: TensorLike,
w: TensorLike,
v: TensorLike,
order: int,
) -> TensorLike:
"""Apply polyharmonic interpolation model to data.
Given coefficients w and v for the interpolation model, we evaluate
interpolated function values at query_points.
Args:
query_points: `[b, m, d]` x values to evaluate the interpolation at.
train_points: `[b, n, d]` x values that act as the interpolation centers
(the c variables in the wikipedia article).
w: `[b, n, k]` weights on each interpolation center.
v: `[b, d, k]` weights on each input dimension.
order: order of the interpolation.
Returns:
Polyharmonic interpolation evaluated at points defined in `query_points`.
"""
# First, compute the contribution from the rbf term.
pairwise_dists = _cross_squared_distance_matrix(query_points, train_points)
phi_pairwise_dists = _phi(pairwise_dists, order)
rbf_term = tf.matmul(phi_pairwise_dists, w)
# Then, compute the contribution from the linear term.
# Pad query_points with ones, for the bias term in the linear model.
query_points_pad = tf.concat(
[query_points, tf.ones_like(query_points[..., :1], train_points.dtype)], 2
)
linear_term = tf.matmul(query_points_pad, v)
return rbf_term + linear_term
def _phi(r: FloatTensorLike, order: int) -> FloatTensorLike:
"""Coordinate-wise nonlinearity used to define the order of the
interpolation.
See https://en.wikipedia.org/wiki/Polyharmonic_spline for the definition.
Args:
r: input op.
order: interpolation order.
Returns:
`phi_k` evaluated coordinate-wise on `r`, for `k = r`.
"""
# using EPSILON prevents log(0), sqrt0), etc.
# sqrt(0) is well-defined, but its gradient is not
with tf.name_scope("phi"):
if order == 1:
r = tf.maximum(r, EPSILON)
r = tf.sqrt(r)
return r
elif order == 2:
return 0.5 * r * tf.math.log(tf.maximum(r, EPSILON))
elif order == 4:
return 0.5 * tf.square(r) * tf.math.log(tf.maximum(r, EPSILON))
elif order % 2 == 0:
r = tf.maximum(r, EPSILON)
return 0.5 * tf.pow(r, 0.5 * order) * tf.math.log(r)
else:
r = tf.maximum(r, EPSILON)
return tf.pow(r, 0.5 * order)
def interpolate_spline(
train_points: TensorLike,
train_values: TensorLike,
query_points: TensorLike,
order: int,
regularization_weight: FloatTensorLike = 0.0,
name: str = "interpolate_spline",
) -> tf.Tensor:
r"""Interpolate signal using polyharmonic interpolation.
The interpolant has the form
$$f(x) = \sum_{i = 1}^n w_i \phi(||x - c_i||) + v^T x + b.$$
This is a sum of two terms: (1) a weighted sum of radial basis function
(RBF) terms, with the centers \\(c_1, ... c_n\\), and (2) a linear term
with a bias. The \\(c_i\\) vectors are 'training' points.
In the code, b is absorbed into v
by appending 1 as a final dimension to x. The coefficients w and v are
estimated such that the interpolant exactly fits the value of the function
at the \\(c_i\\) points, the vector w is orthogonal to each \\(c_i\\),
and the vector w sums to 0. With these constraints, the coefficients
can be obtained by solving a linear system.
\\(\phi\\) is an RBF, parametrized by an interpolation
order. Using order=2 produces the well-known thin-plate spline.
We also provide the option to perform regularized interpolation. Here, the
interpolant is selected to trade off between the squared loss on the
training data and a certain measure of its curvature
([details](https://en.wikipedia.org/wiki/Polyharmonic_spline)).
Using a regularization weight greater than zero has the effect that the
interpolant will no longer exactly fit the training data. However, it may
be less vulnerable to overfitting, particularly for high-order
interpolation.
Note the interpolation procedure is differentiable with respect to all
inputs besides the order parameter.
We support dynamically-shaped inputs, where batch_size, n, and m are None
at graph construction time. However, d and k must be known.
Args:
train_points: `[batch_size, n, d]` float `Tensor` of n d-dimensional
locations. These do not need to be regularly-spaced.
train_values: `[batch_size, n, k]` float `Tensor` of n c-dimensional
values evaluated at train_points.
query_points: `[batch_size, m, d]` `Tensor` of m d-dimensional locations
where we will output the interpolant's values.
order: order of the interpolation. Common values are 1 for
\\(\phi(r) = r\\), 2 for \\(\phi(r) = r^2 * log(r)\\)
(thin-plate spline), or 3 for \\(\phi(r) = r^3\\).
regularization_weight: weight placed on the regularization term.
This will depend substantially on the problem, and it should always be
tuned. For many problems, it is reasonable to use no regularization.
If using a non-zero value, we recommend a small value like 0.001.
name: name prefix for ops created by this function
Returns:
`[b, m, k]` float `Tensor` of query values. We use train_points and
train_values to perform polyharmonic interpolation. The query values are
the values of the interpolant evaluated at the locations specified in
query_points.
"""
with tf.name_scope(name or "interpolate_spline"):
train_points = tf.convert_to_tensor(train_points)
train_values = tf.convert_to_tensor(train_values)
query_points = tf.convert_to_tensor(query_points)
# First, fit the spline to the observed data.
with tf.name_scope("solve"):
w, v = _solve_interpolation(
train_points, train_values, order, regularization_weight
)
# Then, evaluate the spline at the query locations.
with tf.name_scope("predict"):
query_values = _apply_interpolation(query_points, train_points, w, v, order)
return query_values
|