File size: 15,780 Bytes
74c6a32 a27d55f 74c6a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
import os, sys
# currentdir = os.path.dirname(os.path.realpath(__file__))
# parentdir = os.path.dirname(currentdir)
# sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
#
# PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True'
import tensorflow.keras.layers as kl
import tensorflow.keras.backend as K
import tensorflow as tf
import numpy as np
import random
from ddmr.utils.operators import soft_threshold, gaussian_kernel, sample_unique
import ddmr.utils.constants as C
from ddmr.utils.thin_plate_splines import ThinPlateSplines
from voxelmorph.tf.layers import SpatialTransformer
from neurite.tf.utils import resize
#from cupyx.scipy.ndimage import zoom
#import cupy
class UncertaintyWeighting(kl.Layer):
def __init__(self, num_loss_fns=1, num_reg_fns=0, loss_fns: list = [tf.keras.losses.mean_squared_error],
reg_fns: list = list(), prior_loss_w=[1.], manual_loss_w=[1.], prior_reg_w=[1.], manual_reg_w=[1.],
**kwargs):
assert isinstance(loss_fns, list) and (num_loss_fns == len(loss_fns) or len(loss_fns) == 1)
assert isinstance(reg_fns, list) and (num_reg_fns == len(reg_fns))
self.num_loss = num_loss_fns
if len(loss_fns) == 1 and self.num_loss > 1:
self.loss_fns = loss_fns * self.num_loss
else:
self.loss_fns = loss_fns
if len(prior_loss_w) == 1:
self.prior_loss_w = prior_loss_w * num_loss_fns
else:
self.prior_loss_w = prior_loss_w
self.prior_loss_w = np.log(self.prior_loss_w)
if len(manual_loss_w) == 1:
self.manual_loss_w = manual_loss_w * num_loss_fns
else:
self.manual_loss_w = manual_loss_w
self.num_reg = num_reg_fns
if self.num_reg != 0:
if len(reg_fns) == 1 and self.num_reg > 1:
self.reg_fns = reg_fns * self.num_reg
else:
self.reg_fns = reg_fns
self.is_placeholder = True
if self.num_reg != 0:
if len(prior_reg_w) == 1:
self.prior_reg_w = prior_reg_w * num_reg_fns
else:
self.prior_reg_w = prior_reg_w
self.prior_reg_w = np.log(self.prior_reg_w)
if len(manual_reg_w) == 1:
self.manual_reg_w = manual_reg_w * num_reg_fns
else:
self.manual_reg_w = manual_reg_w
else:
self.prior_reg_w = list()
self.manual_reg_w = list()
super(UncertaintyWeighting, self).__init__(**kwargs)
def build(self, input_shape=None):
self.log_loss_vars = self.add_weight(name='loss_log_vars', shape=(self.num_loss,),
initializer=tf.keras.initializers.Constant(self.prior_loss_w),
trainable=True)
self.loss_weights = tf.math.softmax(self.log_loss_vars, name='SM_loss_weights')
if self.num_reg != 0:
self.log_reg_vars = self.add_weight(name='loss_reg_vars', shape=(self.num_reg,),
initializer=tf.keras.initializers.Constant(self.prior_reg_w),
trainable=True)
if self.num_reg == 1:
self.reg_weights = tf.math.exp(self.log_reg_vars, name='EXP_reg_weights')
else:
self.reg_weights = tf.math.softmax(self.log_reg_vars, name='SM_reg_weights')
super(UncertaintyWeighting, self).build(input_shape)
def multi_loss(self, ys_true, ys_pred, regs_true, regs_pred):
loss_values = list()
loss_names_loss = list()
loss_names_reg = list()
for y_true, y_pred, loss_fn, man_w in zip(ys_true, ys_pred, self.loss_fns, self.manual_loss_w):
loss_values.append(tf.keras.backend.mean(man_w * loss_fn(y_true, y_pred)))
loss_names_loss.append(loss_fn.__name__)
loss_values = tf.convert_to_tensor(loss_values, dtype=tf.float32, name="step_loss_values")
loss = tf.math.multiply(self.loss_weights, loss_values, name='step_weighted_loss')
if self.num_reg != 0:
loss_reg = list()
for reg_true, reg_pred, reg_fn, man_w in zip(regs_true, regs_pred, self.reg_fns, self.manual_reg_w):
loss_reg.append(K.mean(man_w * reg_fn(reg_true, reg_pred)))
loss_names_reg.append(reg_fn.__name__)
reg_values = tf.convert_to_tensor(loss_reg, dtype=tf.float32, name="step_reg_values")
loss = loss + tf.math.multiply(self.reg_weights, reg_values, name='step_weighted_reg')
for i, loss_name in enumerate(loss_names_loss):
self.add_metric(tf.slice(self.loss_weights, [i], [1]), name='LOSS_WEIGHT_{}_{}'.format(i, loss_name),
aggregation='mean')
self.add_metric(tf.slice(loss_values, [i], [1]), name='LOSS_VALUE_{}_{}'.format(i, loss_name),
aggregation='mean')
if self.num_reg != 0:
for i, loss_name in enumerate(loss_names_reg):
self.add_metric(tf.slice(self.reg_weights, [i], [1]), name='REG_WEIGHT_{}_{}'.format(i, loss_name),
aggregation='mean')
self.add_metric(tf.slice(reg_values, [i], [1]), name='REG_VALUE_{}_{}'.format(i, loss_name),
aggregation='mean')
return K.sum(loss)
def call(self, inputs):
ys_true = inputs[:self.num_loss]
ys_pred = inputs[self.num_loss:self.num_loss*2]
reg_true = inputs[-self.num_reg*2:-self.num_reg]
reg_pred = inputs[-self.num_reg:] # The last terms are the regularization ones which have no GT
loss = self.multi_loss(ys_true, ys_pred, reg_true, reg_pred)
self.add_loss(loss, inputs=inputs)
# We won't actually use the output, but we need something for the TF graph
return K.concatenate(inputs, -1)
def get_config(self):
base_config = super(UncertaintyWeighting, self).get_config()
base_config['num_loss_fns'] = self.num_loss
base_config['num_reg_fns'] = self.num_reg
return base_config
class UncertaintyWeightingWithRollingAverage(kl.Layer):
def __init__(self, num_loss_fns=1, num_reg_fns=0, loss_fns: list = [tf.keras.losses.mean_squared_error],
reg_fns: list = list(), prior_loss_w=[1.], manual_loss_w=[1.], prior_reg_w=[1.], manual_reg_w=[1.],
roll_avg_reference=0, # position in loss_fns of the reference loss function for the rolling avg
**kwargs):
assert isinstance(loss_fns, list) and (num_loss_fns == len(loss_fns) or len(loss_fns) == 1)
assert isinstance(reg_fns, list) and (num_reg_fns == len(reg_fns))
# Rolling average attributes
self.ref_loss = roll_avg_reference
self.compute_roll_avg = False # Toogle between computing the average of the losses or updating a know average
self.scale_factor = [1.] * num_loss_fns
self.n = 0 # Number of viewed samples
self.temp_storage = [0.] * num_loss_fns
self.num_loss = num_loss_fns
if len(loss_fns) == 1 and self.num_loss > 1:
self.loss_fns = loss_fns * self.num_loss
else:
self.loss_fns = loss_fns
if len(prior_loss_w) == 1:
self.prior_loss_w = prior_loss_w * num_loss_fns
else:
self.prior_loss_w = prior_loss_w
self.prior_loss_w = np.log(self.prior_loss_w)
if len(manual_loss_w) == 1:
self.manual_loss_w = manual_loss_w * num_loss_fns
else:
self.manual_loss_w = manual_loss_w
self.num_reg = num_reg_fns
if self.num_reg != 0:
if len(reg_fns) == 1 and self.num_reg > 1:
self.reg_fns = reg_fns * self.num_reg
else:
self.reg_fns = reg_fns
self.is_placeholder = True
if self.num_reg != 0:
if len(prior_reg_w) == 1:
self.prior_reg_w = prior_reg_w * num_reg_fns
else:
self.prior_reg_w = prior_reg_w
self.prior_reg_w = np.log(self.prior_reg_w)
if len(manual_reg_w) == 1:
self.manual_reg_w = manual_reg_w * num_reg_fns
else:
self.manual_reg_w = manual_reg_w
else:
self.prior_reg_w = list()
self.manual_reg_w = list()
super(UncertaintyWeightingWithRollingAverage, self).__init__(**kwargs)
def build(self, input_shape=None):
self.log_loss_vars = self.add_weight(name='loss_log_vars', shape=(self.num_loss,),
initializer=tf.keras.initializers.Constant(self.prior_loss_w),
trainable=True)
self.loss_weights = tf.math.softmax(self.log_loss_vars, name='SM_loss_weights')
if self.num_reg != 0:
self.log_reg_vars = self.add_weight(name='loss_reg_vars', shape=(self.num_reg,),
initializer=tf.keras.initializers.Constant(self.prior_reg_w),
trainable=True)
if self.num_reg == 1:
self.reg_weights = tf.math.exp(self.log_reg_vars, name='EXP_reg_weights')
else:
self.reg_weights = tf.math.softmax(self.log_reg_vars, name='SM_reg_weights')
super(UncertaintyWeightingWithRollingAverage, self).build(input_shape)
def store_values(self, new_loss_values):
for i, (t, v) in enumerate(zip(self.temp_storage, new_loss_values)):
self.temp_storage[i] = t + v
self.n += 1
def compute_scale_factors(self):
for i, val in enumerate(self.temp_storage):
self.scale_factor[i] = self.n / val # 1/avg
self.scale_factor[self.ref_loss] = 1.
self.temp_storage = [0.] * self.num_loss
self.n = 0
@property
def ref_on_epoch_end_function(self):
return self.compute_scale_factors
def multi_loss(self, ys_true, ys_pred, regs_true, regs_pred):
loss_values = list()
loss_names_loss = list()
loss_names_reg = list()
for y_true, y_pred, loss_fn, man_w, sf in zip(ys_true, ys_pred, self.loss_fns, self.manual_loss_w, self.scale_factor):
loss_values.append(sf * tf.keras.backend.mean(man_w * loss_fn(y_true, y_pred)))
loss_names_loss.append(loss_fn.__name__)
self.store_values(loss_values)
loss_values = tf.convert_to_tensor(loss_values, dtype=tf.float32, name="step_loss_values")
loss = tf.math.multiply(self.loss_weights, loss_values, name='step_weighted_loss')
if self.num_reg != 0:
loss_reg = list()
for reg_true, reg_pred, reg_fn, man_w in zip(regs_true, regs_pred, self.reg_fns, self.manual_reg_w):
loss_reg.append(K.mean(man_w * reg_fn(reg_true, reg_pred)))
loss_names_reg.append(reg_fn.__name__)
reg_values = tf.convert_to_tensor(loss_reg, dtype=tf.float32, name="step_reg_values")
loss = loss + tf.math.multiply(self.reg_weights, reg_values, name='step_weighted_reg')
for i, loss_name in enumerate(loss_names_loss):
self.add_metric(tf.slice(self.loss_weights, [i], [1]), name='LOSS_WEIGHT_{}_{}'.format(i, loss_name),
aggregation='mean')
self.add_metric(tf.slice(loss_values, [i], [1]), name='LOSS_VALUE_{}_{}'.format(i, loss_name),
aggregation='mean')
if self.num_reg != 0:
for i, loss_name in enumerate(loss_names_reg):
self.add_metric(tf.slice(self.reg_weights, [i], [1]), name='REG_WEIGHT_{}_{}'.format(i, loss_name),
aggregation='mean')
self.add_metric(tf.slice(reg_values, [i], [1]), name='REG_VALUE_{}_{}'.format(i, loss_name),
aggregation='mean')
sc_tf = tf.convert_to_tensor(self.scale_factor, dtype=tf.float32, name='scale_factors_tf')
self.add_metric(tf.slice(sc_tf, [i], [1]), name='SCALE_FACTOR_{}_{}'.format(i, loss_name),
aggregation='mean')
return K.sum(loss)
def call(self, inputs):
ys_true = inputs[:self.num_loss]
ys_pred = inputs[self.num_loss:self.num_loss*2]
reg_true = inputs[-self.num_reg*2:-self.num_reg]
reg_pred = inputs[-self.num_reg:] # The last terms are the regularization ones which have no GT
loss = self.multi_loss(ys_true, ys_pred, reg_true, reg_pred)
self.add_loss(loss, inputs=inputs)
# We won't actually use the output, but we need something for the TF graph
return K.concatenate(inputs, -1)
def get_config(self):
base_config = super(UncertaintyWeighting, self).get_config()
base_config['num_loss_fns'] = self.num_loss
base_config['num_reg_fns'] = self.num_reg
return base_config
def distance_map(coord1, coord2, dist, img_shape_w_channel=(64, 64, 1)):
max_dist = np.max(img_shape_w_channel)
dm_p = np.ones(img_shape_w_channel, np.float32)*max_dist
dm_n = np.ones(img_shape_w_channel, np.float32)*max_dist
for c1, c2, d in zip(coord1, coord2, dist):
dm_p[c1, c2, 0] = d if dm_p[c1, c2, 0] > d else dm_p[c1, c2]
d_n = 64. - max_dist
dm_n[c1, c2, 0] = d_n if dm_n[c1, c2, 0] > d_n else dm_n[c1, c2]
return dm_p/max_dist, dm_n/max_dist
def volume_to_ov_and_dm(in_volume: tf.Tensor):
# This one is run as a preprocessing step
def get_ov_projections_and_dm(volume):
# tf.sign returns -1, 0, 1 depending on the sign of the elements of the input (negative, zero, positive)
i, j, k, c = tf.where(volume > 0.0)
top = tf.sign(tf.reduce_sum(volume, axis=0), name='ov_top')
right = tf.sign(tf.reduce_sum(volume, axis=1), name='ov_right')
front = tf.sign(tf.reduce_sum(volume, axis=2), name='ov_front')
top_p, top_n = tf.py_func(distance_map, [j, k, i], tf.float32)
right_p, right_n = tf.py_func(distance_map, [i, k, j], tf.float32)
front_p, front_n = tf.py_func(distance_map, [i, j, k], tf.float32)
return [front, right, top], [front_p, front_n, top_p, top_n, right_p, right_n]
if len(in_volume.shape.as_list()) > 4:
return tf.map_fn(get_ov_projections_and_dm, in_volume, [tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32])
else:
return get_ov_projections_and_dm(in_volume)
def ov_and_dm_to_volume(ov_projections):
front, right, top = ov_projections
def get_volume(front: tf.Tensor, right: tf.Tensor, top: tf.Tensor):
front_shape = front.shape.as_list() # Assume (H, W, C)
top_shape = top.shape.as_list()
front_vol = tf.tile(tf.expand_dims(front, 2), [1, 1, top_shape[0], 1])
right_vol = tf.tile(tf.expand_dims(right, 1), [1, front_shape[1], 1, 1])
top_vol = tf.tile(tf.expand_dims(top, 0), [front_shape[0], 1, 1, 1])
sum = tf.add(tf.add(front_vol, right_vol), top_vol)
return soft_threshold(sum, 2., 'get_volume')
if len(front.shape.as_list()) > 3:
return tf.map_fn(lambda x: get_volume(x[0], x[1], x[2]), ov_projections, tf.float32)
else:
return get_volume(front, right, top)
# TODO: Recovering the coordinates from the distance maps to prevent artifacts
# will the gradients be backpropagated??!?!!?!?!
|