File size: 15,780 Bytes
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
a27d55f
 
 
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
import os, sys

# currentdir = os.path.dirname(os.path.realpath(__file__))
# parentdir = os.path.dirname(currentdir)
# sys.path.append(parentdir)  # PYTHON > 3.3 does not allow relative referencing
#
# PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True'

import tensorflow.keras.layers as kl
import tensorflow.keras.backend as K
import tensorflow as tf
import numpy as np
import random

from ddmr.utils.operators import soft_threshold, gaussian_kernel, sample_unique
import ddmr.utils.constants as C
from ddmr.utils.thin_plate_splines import ThinPlateSplines
from voxelmorph.tf.layers import SpatialTransformer
from neurite.tf.utils import resize
#from cupyx.scipy.ndimage import zoom
#import cupy


class UncertaintyWeighting(kl.Layer):
    def __init__(self, num_loss_fns=1, num_reg_fns=0, loss_fns: list = [tf.keras.losses.mean_squared_error],
                 reg_fns: list = list(), prior_loss_w=[1.], manual_loss_w=[1.], prior_reg_w=[1.], manual_reg_w=[1.],
                 **kwargs):
        assert isinstance(loss_fns, list) and (num_loss_fns == len(loss_fns) or len(loss_fns) == 1)
        assert isinstance(reg_fns, list) and (num_reg_fns == len(reg_fns))
        self.num_loss = num_loss_fns
        if len(loss_fns) == 1 and self.num_loss > 1:
            self.loss_fns = loss_fns * self.num_loss
        else:
            self.loss_fns = loss_fns

        if len(prior_loss_w) == 1:
            self.prior_loss_w = prior_loss_w * num_loss_fns
        else:
            self.prior_loss_w = prior_loss_w
        self.prior_loss_w = np.log(self.prior_loss_w)

        if len(manual_loss_w) == 1:
            self.manual_loss_w = manual_loss_w * num_loss_fns
        else:
            self.manual_loss_w = manual_loss_w

        self.num_reg = num_reg_fns
        if self.num_reg != 0:
            if len(reg_fns) == 1 and self.num_reg > 1:
                self.reg_fns = reg_fns * self.num_reg
            else:
                self.reg_fns = reg_fns

            self.is_placeholder = True
            if self.num_reg != 0:
                if len(prior_reg_w) == 1:
                    self.prior_reg_w = prior_reg_w * num_reg_fns
                else:
                    self.prior_reg_w = prior_reg_w
                self.prior_reg_w = np.log(self.prior_reg_w)

                if len(manual_reg_w) == 1:
                    self.manual_reg_w = manual_reg_w * num_reg_fns
                else:
                    self.manual_reg_w = manual_reg_w

        else:
            self.prior_reg_w = list()
            self.manual_reg_w = list()

        super(UncertaintyWeighting, self).__init__(**kwargs)

    def build(self, input_shape=None):
        self.log_loss_vars = self.add_weight(name='loss_log_vars', shape=(self.num_loss,),
                                             initializer=tf.keras.initializers.Constant(self.prior_loss_w),
                                             trainable=True)
        self.loss_weights = tf.math.softmax(self.log_loss_vars, name='SM_loss_weights')

        if self.num_reg != 0:
            self.log_reg_vars = self.add_weight(name='loss_reg_vars', shape=(self.num_reg,),
                                                initializer=tf.keras.initializers.Constant(self.prior_reg_w),
                                                trainable=True)
            if self.num_reg == 1:
                self.reg_weights = tf.math.exp(self.log_reg_vars, name='EXP_reg_weights')
            else:
                self.reg_weights = tf.math.softmax(self.log_reg_vars, name='SM_reg_weights')

        super(UncertaintyWeighting, self).build(input_shape)

    def multi_loss(self, ys_true, ys_pred, regs_true, regs_pred):
        loss_values = list()
        loss_names_loss = list()
        loss_names_reg = list()

        for y_true, y_pred, loss_fn, man_w in zip(ys_true, ys_pred, self.loss_fns, self.manual_loss_w):
            loss_values.append(tf.keras.backend.mean(man_w * loss_fn(y_true, y_pred)))
            loss_names_loss.append(loss_fn.__name__)

        loss_values = tf.convert_to_tensor(loss_values, dtype=tf.float32, name="step_loss_values")
        loss = tf.math.multiply(self.loss_weights, loss_values, name='step_weighted_loss')

        if self.num_reg != 0:
            loss_reg = list()
            for reg_true, reg_pred, reg_fn, man_w in zip(regs_true, regs_pred, self.reg_fns, self.manual_reg_w):
                loss_reg.append(K.mean(man_w * reg_fn(reg_true, reg_pred)))
                loss_names_reg.append(reg_fn.__name__)

            reg_values = tf.convert_to_tensor(loss_reg, dtype=tf.float32, name="step_reg_values")
            loss = loss + tf.math.multiply(self.reg_weights, reg_values, name='step_weighted_reg')

        for i, loss_name in enumerate(loss_names_loss):
            self.add_metric(tf.slice(self.loss_weights, [i], [1]), name='LOSS_WEIGHT_{}_{}'.format(i, loss_name),
                            aggregation='mean')
            self.add_metric(tf.slice(loss_values, [i], [1]), name='LOSS_VALUE_{}_{}'.format(i, loss_name),
                            aggregation='mean')
        if self.num_reg != 0:
            for i, loss_name in enumerate(loss_names_reg):
                self.add_metric(tf.slice(self.reg_weights, [i], [1]), name='REG_WEIGHT_{}_{}'.format(i, loss_name),
                                aggregation='mean')
                self.add_metric(tf.slice(reg_values, [i], [1]), name='REG_VALUE_{}_{}'.format(i, loss_name),
                                aggregation='mean')

        return K.sum(loss)

    def call(self, inputs):
        ys_true = inputs[:self.num_loss]
        ys_pred = inputs[self.num_loss:self.num_loss*2]
        reg_true = inputs[-self.num_reg*2:-self.num_reg]
        reg_pred = inputs[-self.num_reg:]             # The last terms are the regularization ones which have no GT
        loss = self.multi_loss(ys_true, ys_pred, reg_true, reg_pred)
        self.add_loss(loss, inputs=inputs)
        # We won't actually use the output, but we need something for the TF graph
        return K.concatenate(inputs, -1)

    def get_config(self):
        base_config = super(UncertaintyWeighting, self).get_config()
        base_config['num_loss_fns'] = self.num_loss
        base_config['num_reg_fns'] = self.num_reg

        return base_config


class UncertaintyWeightingWithRollingAverage(kl.Layer):
    def __init__(self, num_loss_fns=1, num_reg_fns=0, loss_fns: list = [tf.keras.losses.mean_squared_error],
                 reg_fns: list = list(), prior_loss_w=[1.], manual_loss_w=[1.], prior_reg_w=[1.], manual_reg_w=[1.],
                 roll_avg_reference=0,  # position in loss_fns of the reference loss function for the rolling avg
                 **kwargs):
        assert isinstance(loss_fns, list) and (num_loss_fns == len(loss_fns) or len(loss_fns) == 1)
        assert isinstance(reg_fns, list) and (num_reg_fns == len(reg_fns))
        # Rolling average attributes
        self.ref_loss = roll_avg_reference
        self.compute_roll_avg = False    # Toogle between computing the average of the losses or updating a know average
        self.scale_factor = [1.] * num_loss_fns
        self.n = 0  # Number of viewed samples
        self.temp_storage = [0.] * num_loss_fns

        self.num_loss = num_loss_fns
        if len(loss_fns) == 1 and self.num_loss > 1:
            self.loss_fns = loss_fns * self.num_loss
        else:
            self.loss_fns = loss_fns

        if len(prior_loss_w) == 1:
            self.prior_loss_w = prior_loss_w * num_loss_fns
        else:
            self.prior_loss_w = prior_loss_w
        self.prior_loss_w = np.log(self.prior_loss_w)

        if len(manual_loss_w) == 1:
            self.manual_loss_w = manual_loss_w * num_loss_fns
        else:
            self.manual_loss_w = manual_loss_w

        self.num_reg = num_reg_fns
        if self.num_reg != 0:
            if len(reg_fns) == 1 and self.num_reg > 1:
                self.reg_fns = reg_fns * self.num_reg
            else:
                self.reg_fns = reg_fns

            self.is_placeholder = True
            if self.num_reg != 0:
                if len(prior_reg_w) == 1:
                    self.prior_reg_w = prior_reg_w * num_reg_fns
                else:
                    self.prior_reg_w = prior_reg_w
                self.prior_reg_w = np.log(self.prior_reg_w)

                if len(manual_reg_w) == 1:
                    self.manual_reg_w = manual_reg_w * num_reg_fns
                else:
                    self.manual_reg_w = manual_reg_w

        else:
            self.prior_reg_w = list()
            self.manual_reg_w = list()

        super(UncertaintyWeightingWithRollingAverage, self).__init__(**kwargs)

    def build(self, input_shape=None):
        self.log_loss_vars = self.add_weight(name='loss_log_vars', shape=(self.num_loss,),
                                             initializer=tf.keras.initializers.Constant(self.prior_loss_w),
                                             trainable=True)
        self.loss_weights = tf.math.softmax(self.log_loss_vars, name='SM_loss_weights')

        if self.num_reg != 0:
            self.log_reg_vars = self.add_weight(name='loss_reg_vars', shape=(self.num_reg,),
                                                initializer=tf.keras.initializers.Constant(self.prior_reg_w),
                                                trainable=True)
            if self.num_reg == 1:
                self.reg_weights = tf.math.exp(self.log_reg_vars, name='EXP_reg_weights')
            else:
                self.reg_weights = tf.math.softmax(self.log_reg_vars, name='SM_reg_weights')

        super(UncertaintyWeightingWithRollingAverage, self).build(input_shape)

    def store_values(self, new_loss_values):
        for i, (t, v) in enumerate(zip(self.temp_storage, new_loss_values)):
            self.temp_storage[i] = t + v
        self.n += 1

    def compute_scale_factors(self):
        for i, val in enumerate(self.temp_storage):
            self.scale_factor[i] = self.n / val  # 1/avg

        self.scale_factor[self.ref_loss] = 1.

        self.temp_storage = [0.] * self.num_loss
        self.n = 0

    @property
    def ref_on_epoch_end_function(self):
        return self.compute_scale_factors

    def multi_loss(self, ys_true, ys_pred, regs_true, regs_pred):
        loss_values = list()
        loss_names_loss = list()
        loss_names_reg = list()

        for y_true, y_pred, loss_fn, man_w, sf in zip(ys_true, ys_pred, self.loss_fns, self.manual_loss_w, self.scale_factor):
            loss_values.append(sf * tf.keras.backend.mean(man_w * loss_fn(y_true, y_pred)))
            loss_names_loss.append(loss_fn.__name__)

        self.store_values(loss_values)
        loss_values = tf.convert_to_tensor(loss_values, dtype=tf.float32, name="step_loss_values")
        loss = tf.math.multiply(self.loss_weights, loss_values, name='step_weighted_loss')

        if self.num_reg != 0:
            loss_reg = list()
            for reg_true, reg_pred, reg_fn, man_w in zip(regs_true, regs_pred, self.reg_fns, self.manual_reg_w):
                loss_reg.append(K.mean(man_w * reg_fn(reg_true, reg_pred)))
                loss_names_reg.append(reg_fn.__name__)

            reg_values = tf.convert_to_tensor(loss_reg, dtype=tf.float32, name="step_reg_values")
            loss = loss + tf.math.multiply(self.reg_weights, reg_values, name='step_weighted_reg')

        for i, loss_name in enumerate(loss_names_loss):
            self.add_metric(tf.slice(self.loss_weights, [i], [1]), name='LOSS_WEIGHT_{}_{}'.format(i, loss_name),
                            aggregation='mean')
            self.add_metric(tf.slice(loss_values, [i], [1]), name='LOSS_VALUE_{}_{}'.format(i, loss_name),
                            aggregation='mean')
        if self.num_reg != 0:
            for i, loss_name in enumerate(loss_names_reg):
                self.add_metric(tf.slice(self.reg_weights, [i], [1]), name='REG_WEIGHT_{}_{}'.format(i, loss_name),
                                aggregation='mean')
                self.add_metric(tf.slice(reg_values, [i], [1]), name='REG_VALUE_{}_{}'.format(i, loss_name),
                                aggregation='mean')
                sc_tf = tf.convert_to_tensor(self.scale_factor, dtype=tf.float32, name='scale_factors_tf')
                self.add_metric(tf.slice(sc_tf, [i], [1]), name='SCALE_FACTOR_{}_{}'.format(i, loss_name),
                                aggregation='mean')

        return K.sum(loss)

    def call(self, inputs):
        ys_true = inputs[:self.num_loss]
        ys_pred = inputs[self.num_loss:self.num_loss*2]
        reg_true = inputs[-self.num_reg*2:-self.num_reg]
        reg_pred = inputs[-self.num_reg:]             # The last terms are the regularization ones which have no GT
        loss = self.multi_loss(ys_true, ys_pred, reg_true, reg_pred)
        self.add_loss(loss, inputs=inputs)
        # We won't actually use the output, but we need something for the TF graph
        return K.concatenate(inputs, -1)

    def get_config(self):
        base_config = super(UncertaintyWeighting, self).get_config()
        base_config['num_loss_fns'] = self.num_loss
        base_config['num_reg_fns'] = self.num_reg

        return base_config


def distance_map(coord1, coord2, dist, img_shape_w_channel=(64, 64, 1)):
    max_dist = np.max(img_shape_w_channel)
    dm_p = np.ones(img_shape_w_channel, np.float32)*max_dist
    dm_n = np.ones(img_shape_w_channel, np.float32)*max_dist

    for c1, c2, d in zip(coord1, coord2, dist):
        dm_p[c1, c2, 0] = d if dm_p[c1, c2, 0] > d else dm_p[c1, c2]
        d_n = 64. - max_dist
        dm_n[c1, c2, 0] = d_n if dm_n[c1, c2, 0] > d_n else dm_n[c1, c2]

    return dm_p/max_dist, dm_n/max_dist


def volume_to_ov_and_dm(in_volume: tf.Tensor):
    # This one is run as a preprocessing step
    def get_ov_projections_and_dm(volume):
        # tf.sign returns -1, 0, 1 depending on the sign of the elements of the input (negative, zero, positive)
        i, j, k, c = tf.where(volume > 0.0)
        top = tf.sign(tf.reduce_sum(volume, axis=0), name='ov_top')
        right = tf.sign(tf.reduce_sum(volume, axis=1), name='ov_right')
        front = tf.sign(tf.reduce_sum(volume, axis=2), name='ov_front')

        top_p, top_n = tf.py_func(distance_map, [j, k, i], tf.float32)
        right_p, right_n = tf.py_func(distance_map, [i, k, j], tf.float32)
        front_p, front_n = tf.py_func(distance_map, [i, j, k], tf.float32)

        return [front, right, top], [front_p, front_n, top_p, top_n, right_p, right_n]

    if len(in_volume.shape.as_list()) > 4:
        return tf.map_fn(get_ov_projections_and_dm, in_volume, [tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32, tf.float32])
    else:
        return get_ov_projections_and_dm(in_volume)


def ov_and_dm_to_volume(ov_projections):
    front, right, top = ov_projections

    def get_volume(front: tf.Tensor, right: tf.Tensor, top: tf.Tensor):
        front_shape = front.shape.as_list()  # Assume (H, W, C)
        top_shape = top.shape.as_list()

        front_vol = tf.tile(tf.expand_dims(front, 2), [1, 1, top_shape[0], 1])
        right_vol = tf.tile(tf.expand_dims(right, 1), [1, front_shape[1], 1, 1])
        top_vol = tf.tile(tf.expand_dims(top, 0), [front_shape[0], 1, 1, 1])
        sum = tf.add(tf.add(front_vol, right_vol), top_vol)
        return soft_threshold(sum, 2., 'get_volume')

    if len(front.shape.as_list()) > 3:
        return tf.map_fn(lambda x: get_volume(x[0], x[1], x[2]), ov_projections, tf.float32)
    else:
        return get_volume(front, right, top)

# TODO: Recovering the coordinates from the distance maps to prevent artifacts
#   will the gradients be backpropagated??!?!!?!?!