File size: 28,478 Bytes
74c6a32 78ae283 74c6a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
import tensorflow as tf
import numpy as np
from numpy import (zeros, where, diff, floor, minimum, maximum, array, concatenate, logical_or, logical_xor,
sqrt)
from tensorflow.python.framework import tensor_shape
from tensorflow.python.keras.utils import conv_utils
from tensorflow.python.keras.engine.base_layer import Layer
from tensorflow.python.keras.engine.input_spec import InputSpec
from tensorflow.python.util.tf_export import keras_export # api_export
# SRC: https://github.com/tensorflow/tensorflow/issues/46609
# import functools
# keras_export = functools.partial(api_export, 'keras') # keras_export is not defined in 1.13 but in 1.15 --> https://github.com/tensorflow/tensorflow/blob/3d6e4f24e32b5dbe0a83aaa6e9d0f6671ba41da8/tensorflow/python/util/tf_export.py
def linear_interpolate(x_fix, y_fix, x_var):
'''
Functionality:
1D linear interpolation
Author:
Michael Osthege
Link:
https://gist.github.com/michaelosthege/e20d242bc62a434843b586c78ebce6cc
'''
x_repeat = tf.tile(x_var[:, None], (len(x_fix), ))
distances = tf.abs(x_repeat - x_fix)
x_indices = tf.searchsorted(x_fix, x_var)
weights = tf.zeros_like(distances)
idx = tf.arange(len(x_indices))
weights[idx, x_indices] = distances[idx, x_indices - 1]
weights[idx, x_indices - 1] = distances[idx, x_indices]
weights /= np.sum(weights, axis=1)[:, None]
y_var = np.dot(weights, y_fix.T)
return y_var
def cubic_interpolate(x, y, x0):
'''
Functionliaty:
1D cubic spline interpolation
Author:
Raphael Valentin
Link:
https://stackoverflow.com/questions/31543775/how-to-perform-cubic-spline-interpolation-in-python
'''
x = np.asfarray(x)
y = np.asfarray(y)
# remove non finite values
# indexes = np.isfinite(x)
# x = x[indexes]
# y = y[indexes]
# check if sorted
if np.any(np.diff(x) < 0):
indexes = np.argsort(x)
x = x[indexes]
y = y[indexes]
size = len(x)
xdiff = np.diff(x)
ydiff = np.diff(y)
# allocate buffer matrices
Li = np.empty(size)
Li_1 = np.empty(size - 1)
z = np.empty(size)
# fill diagonals Li and Li-1 and solve [L][y] = [B]
Li[0] = sqrt(2 * xdiff[0])
Li_1[0] = 0.0
B0 = 0.0 # natural boundary
z[0] = B0 / Li[0]
for i in range(1, size - 1, 1):
Li_1[i] = xdiff[i - 1] / Li[i - 1]
Li[i] = sqrt(2 * (xdiff[i - 1] + xdiff[i]) - Li_1[i - 1] * Li_1[i - 1])
Bi = 6 * (ydiff[i] / xdiff[i] - ydiff[i - 1] / xdiff[i - 1])
z[i] = (Bi - Li_1[i - 1] * z[i - 1]) / Li[i]
i = size - 1
Li_1[i - 1] = xdiff[-1] / Li[i - 1]
Li[i] = sqrt(2 * xdiff[-1] - Li_1[i - 1] * Li_1[i - 1])
Bi = 0.0 # natural boundary
z[i] = (Bi - Li_1[i - 1] * z[i - 1]) / Li[i]
# solve [L.T][x] = [y]
i = size - 1
z[i] = z[i] / Li[i]
for i in range(size - 2, -1, -1):
z[i] = (z[i] - Li_1[i - 1] * z[i + 1]) / Li[i]
# find index
index = x.searchsorted(x0)
np.clip(index, 1, size - 1, index)
xi1, xi0 = x[index], x[index - 1]
yi1, yi0 = y[index], y[index - 1]
zi1, zi0 = z[index], z[index - 1]
hi1 = xi1 - xi0
# calculate cubic
f0 = zi0/(6*hi1)*(xi1-x0)**3 + \
zi1/(6*hi1)*(x0-xi0)**3 + \
(yi1/hi1 - zi1*hi1/6)*(x0-xi0) + \
(yi0/hi1 - zi0*hi1/6)*(xi1-x0)
return f0
def pchip_interpolate(xi, yi, x, mode="mono", verbose=False):
'''
Functionality:
1D PCHP interpolation
Authors:
Michael Taylor <[email protected]>
Mathieu Virbel <[email protected]>
Link:
https://gist.github.com/tito/553f1135959921ce6699652bf656150d
'''
if mode not in ("mono", "quad"):
raise ValueError("Unrecognized mode string")
# Search for [xi,xi+1] interval for each x
xi = xi.astype("double")
yi = yi.astype("double")
x_index = zeros(len(x), dtype="int")
xi_steps = diff(xi)
if not all(xi_steps > 0):
raise ValueError("x-coordinates are not in increasing order.")
x_steps = diff(x)
if xi_steps.max() / xi_steps.min() < 1.000001:
# uniform input grid
if verbose:
print("pchip: uniform input grid")
xi_start = xi[0]
xi_step = (xi[-1] - xi[0]) / (len(xi) - 1)
x_index = minimum(maximum(floor((x - xi_start) / xi_step).astype(int), 0), len(xi) - 2)
# Calculate gradients d
h = (xi[-1] - xi[0]) / (len(xi) - 1)
d = zeros(len(xi), dtype="double")
if mode == "quad":
# quadratic polynomial fit
d[[0]] = (yi[1] - yi[0]) / h
d[[-1]] = (yi[-1] - yi[-2]) / h
d[1:-1] = (yi[2:] - yi[0:-2]) / 2 / h
else:
# mode=='mono', Fritsch-Carlson algorithm from fortran numerical
# recipe
delta = diff(yi) / h
d = concatenate((delta[0:1], 2 / (1 / delta[0:-1] + 1 / delta[1:]), delta[-1:]))
d[concatenate((array([False]), logical_xor(delta[0:-1] > 0, delta[1:] > 0), array([False])))] = 0
d[logical_or(concatenate((array([False]), delta == 0)), concatenate(
(delta == 0, array([False]))))] = 0
# Calculate output values y
dxxi = x - xi[x_index]
dxxid = x - xi[1 + x_index]
dxxi2 = pow(dxxi, 2)
dxxid2 = pow(dxxid, 2)
y = (2 / pow(h, 3) * (yi[x_index] * dxxid2 * (dxxi + h / 2) - yi[1 + x_index] * dxxi2 *
(dxxid - h / 2)) + 1 / pow(h, 2) *
(d[x_index] * dxxid2 * dxxi + d[1 + x_index] * dxxi2 * dxxid))
else:
# not uniform input grid
if (x_steps.max() / x_steps.min() < 1.000001 and x_steps.max() / x_steps.min() > 0.999999):
# non-uniform input grid, uniform output grid
if verbose:
print("pchip: non-uniform input grid, uniform output grid")
x_decreasing = x[-1] < x[0]
if x_decreasing:
x = x[::-1]
x_start = x[0]
x_step = (x[-1] - x[0]) / (len(x) - 1)
x_indexprev = -1
for xi_loop in range(len(xi) - 2):
x_indexcur = max(int(floor((xi[1 + xi_loop] - x_start) / x_step)), -1)
x_index[1 + x_indexprev:1 + x_indexcur] = xi_loop
x_indexprev = x_indexcur
x_index[1 + x_indexprev:] = len(xi) - 2
if x_decreasing:
x = x[::-1]
x_index = x_index[::-1]
elif all(x_steps > 0) or all(x_steps < 0):
# non-uniform input/output grids, output grid monotonic
if verbose:
print("pchip: non-uniform in/out grid, output grid monotonic")
x_decreasing = x[-1] < x[0]
if x_decreasing:
x = x[::-1]
x_len = len(x)
x_loop = 0
for xi_loop in range(len(xi) - 1):
while x_loop < x_len and x[x_loop] < xi[1 + xi_loop]:
x_index[x_loop] = xi_loop
x_loop += 1
x_index[x_loop:] = len(xi) - 2
if x_decreasing:
x = x[::-1]
x_index = x_index[::-1]
else:
# non-uniform input/output grids, output grid not monotonic
if verbose:
print("pchip: non-uniform in/out grids, " "output grid not monotonic")
for index in range(len(x)):
loc = where(x[index] < xi)[0]
if loc.size == 0:
x_index[index] = len(xi) - 2
elif loc[0] == 0:
x_index[index] = 0
else:
x_index[index] = loc[0] - 1
# Calculate gradients d
h = diff(xi)
d = zeros(len(xi), dtype="double")
delta = diff(yi) / h
if mode == "quad":
# quadratic polynomial fit
d[[0, -1]] = delta[[0, -1]]
d[1:-1] = (delta[1:] * h[0:-1] + delta[0:-1] * h[1:]) / (h[0:-1] + h[1:])
else:
# mode=='mono', Fritsch-Carlson algorithm from fortran numerical
# recipe
d = concatenate(
(delta[0:1], 3 * (h[0:-1] + h[1:]) / ((h[0:-1] + 2 * h[1:]) / delta[0:-1] +
(2 * h[0:-1] + h[1:]) / delta[1:]), delta[-1:]))
d[concatenate((array([False]), logical_xor(delta[0:-1] > 0, delta[1:] > 0), array([False])))] = 0
d[logical_or(concatenate((array([False]), delta == 0)), concatenate(
(delta == 0, array([False]))))] = 0
dxxi = x - xi[x_index]
dxxid = x - xi[1 + x_index]
dxxi2 = pow(dxxi, 2)
dxxid2 = pow(dxxid, 2)
y = (2 / pow(h[x_index], 3) *
(yi[x_index] * dxxid2 * (dxxi + h[x_index] / 2) - yi[1 + x_index] * dxxi2 *
(dxxid - h[x_index] / 2)) + 1 / pow(h[x_index], 2) *
(d[x_index] * dxxid2 * dxxi + d[1 + x_index] * dxxi2 * dxxid))
return y
def Interpolate1D(x, y, xx, method='nearest'):
'''
Functionality:
1D interpolation with various methods
Author:
Kai Gao <[email protected]>
'''
n = len(x)
nn = len(xx)
yy = np.zeros(nn)
# Nearest neighbour interpolation
if method == 'nearest':
for i in range(0, nn):
xi = tf.argmin(tf.abs(xx[i] - x))
yy[i] = y[xi]
# Linear interpolation
elif method == 'linear':
# # slower version
# if n == 1:
# yy[:-1] = y[0]
# else:
# for i in range(0, nn):
# if xx[i] < x[0]:
# t = (xx[i] - x[0]) / (x[1] - x[0])
# yy[i] = (1.0 - t) * y[0] + t * y[1]
# elif x[n - 1] <= xx[i]:
# t = (xx[i] - x[n - 2]) / (x[n - 1] - x[n - 2])
# yy[i] = (1.0 - t) * y[n - 2] + t * y[n - 1]
# else:
# for k in range(1, n):
# if x[k - 1] <= xx[i] and xx[i] < x[k]:
# t = (xx[i] - x[k - 1]) / (x[k] - x[k - 1])
# yy[i] = (1.0 - t) * y[k - 1] + t * y[k]
# break
# # faster version
yy = linear_interpolate(x, y, xx)
# Cubic interpolation
elif method == 'cubic':
yy = cubic_interpolate(x, y, xx)
# Piecewise cubic Hermite interpolating polynomial (PCHIP)
elif method == 'pchip':
yy = pchip_interpolate(x, y, xx, mode='mono')
return yy
def Interpolate2D(x, y, f, xx, yy, method='nearest'):
'''
Functionality:
2D interpolation implemented in a separable fashion
There are methods that do real 2D non-separable interpolation, which are
more difficult to implement.
Author:
Kai Gao <[email protected]>
'''
n1 = len(x)
n2 = len(y)
nn1 = len(xx)
nn2 = len(yy)
w = np.zeros((nn1, n2))
ff = np.zeros((nn1, nn2))
# Interpolate along the 1st dimension
for j in range(0, n2):
w[:, j] = Interpolate1D(x, f[:, j], xx, method)
# Interpolate along the 2nd dimension
for i in range(0, nn1):
ff[i, :] = Interpolate1D(y, w[i, :], yy, method)
return ff
def Interpolate3D(x, y, z, f, xx, yy, zz, method='nearest'):
'''
Functionality:
3D interpolation implemented in a separable fashion
There are methods that do real 3D non-separable interpolation, which are
more difficult to implement.
Author:
Kai Gao <[email protected]>
'''
n1 = len(x)
n2 = len(y)
n3 = len(z)
nn1 = len(xx)
nn2 = len(yy)
nn3 = len(zz)
w1 = tf.zeros((nn1, n2, n3))
w2 = tf.zeros((nn1, nn2, n3))
ff = tf.zeros((nn1, nn2, nn3))
# Interpolate along the 1st dimension
for k in range(0, n3):
for j in range(0, n2):
w1[:, j, k] = Interpolate1D(x, f[:, j, k], xx, method)
# Interpolate along the 2nd dimension
for k in range(0, n3):
for i in range(0, nn1):
w2[i, :, k] = Interpolate1D(y, w1[i, :, k], yy, method)
# Interpolate along the 3rd dimension
for j in range(0, nn2):
for i in range(0, nn1):
ff[i, j, :] = Interpolate1D(z, w2[i, j, :], zz, method)
return ff
def UpInterpolate1D(x, size=2, interpolation='nearest', data_format='channels_first', align_corners=True):
'''
Functionality:
1D upsampling interpolation for tf
Author:
Kai Gao <[email protected]>
'''
x = x.numpy()
if data_format == 'channels_last':
nb, nr, nh = x.shape
elif data_format == 'channels_first':
nb, nh, nr = x.shape
r = size
ir = np.linspace(0.0, nr - 1.0, num=nr)
if align_corners:
# align_corners=True assumes that values are sampled at discrete points
iir = np.linspace(0.0, nr - 1.0, num=nr * r)
else:
# aling_corners=False assumes that values are sampled at centers of discrete blocks
iir = np.linspace(0.0 - 0.5 + 0.5 / r, nr - 1.0 + 0.5 - 0.5 / r, num=nr * r)
iir = np.clip(iir, 0.0, nr - 1.0)
if data_format == 'channels_last':
xx = np.zeros((nb, nr * r, nh))
for i in range(0, nb):
for j in range(0, nh):
t = np.reshape(x[i, :, j], (nr))
xx[i, :, j] = Interpolate1D(ir, t, iir, interpolation)
elif data_format == 'channels_first':
xx = np.zeros((nb, nh, nr * r))
for i in range(0, nb):
for j in range(0, nh):
t = np.reshape(x[i, j, :], (nr))
xx[i, j, :] = Interpolate1D(ir, t, iir, interpolation)
return tf.convert_to_tensor(xx, dtype=x.dtype)
def UpInterpolate2D(x,
size=(2, 2),
interpolation='nearest',
data_format='channels_first',
align_corners=True):
'''
Functionality:
2D upsampling interpolation for tf
Author:
Kai Gao <[email protected]>
'''
x = x.numpy()
if data_format == 'channels_last':
nb, nr, nc, nh = x.shape
elif data_format == 'channels_first':
nb, nh, nr, nc = x.shape
r = size[0]
c = size[1]
ir = np.linspace(0.0, nr - 1.0, num=nr)
ic = np.linspace(0.0, nc - 1.0, num=nc)
if align_corners:
# align_corners=True assumes that values are sampled at discrete points
iir = np.linspace(0.0, nr - 1.0, num=nr * r)
iic = np.linspace(0.0, nc - 1.0, num=nc * c)
else:
# aling_corners=False assumes that values are sampled at centers of discrete blocks
iir = np.linspace(0.0 - 0.5 + 0.5 / r, nr - 1.0 + 0.5 - 0.5 / r, num=nr * r)
iic = np.linspace(0.0 - 0.5 + 0.5 / c, nc - 1.0 + 0.5 - 0.5 / c, num=nc * c)
iir = np.clip(iir, 0.0, nr - 1.0)
iic = np.clip(iic, 0.0, nc - 1.0)
if data_format == 'channels_last':
xx = np.zeros((nb, nr * r, nc * c, nh))
for i in range(0, nb):
for j in range(0, nh):
t = np.reshape(x[i, :, :, j], (nr, nc))
xx[i, :, :, j] = Interpolate2D(ir, ic, t, iir, iic, interpolation)
elif data_format == 'channels_first':
xx = np.zeros((nb, nh, nr * r, nc * c))
for i in range(0, nb):
for j in range(0, nh):
t = np.reshape(x[i, j, :, :], (nr, nc))
xx[i, j, :, :] = Interpolate2D(ir, ic, t, iir, iic, interpolation)
return tf.convert_to_tensor(xx, dtype=x.dtype)
def UpInterpolate3D(x,
size=(2, 2, 2),
interpolation='nearest',
data_format='channels_first',
align_corners=True):
'''
Functionality:
3D upsampling interpolation for tf
Author:
Kai Gao <[email protected]>
'''
# x = x.numpy()
if data_format == 'channels_last':
nb, nr, nc, nd, nh = tf.TensorShape(x).as_list()
elif data_format == 'channels_first':
nb, nh, nr, nc, nd = tf.TensorShape(x).as_list()
else:
raise ValueError('Invalid option: ', data_format)
r = size[0]
c = size[1]
d = size[2]
ir = tf.linspace(0.0, nr - 1.0, num=nr)
ic = tf.linspace(0.0, nc - 1.0, num=nc)
id = tf.linspace(0.0, nd - 1.0, num=nd)
if align_corners:
# align_corners=True assumes that values are sampled at discrete points
iir = tf.linspace(0.0, nr - 1.0, num=nr * r)
iic = tf.linspace(0.0, nc - 1.0, num=nc * c)
iid = tf.linspace(0.0, nd - 1.0, num=nd * d)
else:
# aling_corners=False assumes that values are sampled at centers of discrete blocks
iir = tf.linspace(0.0 - 0.5 + 0.5 / r, nr - 1.0 + 0.5 - 0.5 / r, num=nr * r)
iic = tf.linspace(0.0 - 0.5 + 0.5 / c, nc - 1.0 + 0.5 - 0.5 / c, num=nc * c)
iid = tf.linspace(0.0 - 0.5 + 0.5 / d, nd - 1.0 + 0.5 - 0.5 / d, num=nd * d)
iir = tf.clip_by_value(iir, 0.0, nr - 1.0)
iic = tf.clip_by_value(iic, 0.0, nc - 1.0)
iid = tf.clip_by_value(iid, 0.0, nd - 1.0)
if data_format == 'channels_last':
xx = tf.zeros((nb, nr * r, nc * c, nd * d, nh))
for i in range(0, nb):
for j in range(0, nh):
t = tf.reshape(x[i, :, :, :, j], (nr, nc, nd))
xx[i, :, :, :, j] = Interpolate3D(ir, ic, id, t, iir, iic, iid, interpolation)
elif data_format == 'channels_first':
xx = tf.zeros((nb, nh, nr * r, nc * c, nd * d))
for i in range(0, nb):
for j in range(0, nh):
t = tf.reshape(x[i, j, :, :, :], (nr, nc, nd))
xx[i, j, :, :, :] = Interpolate3D(ir, ic, id, t, iir, iic, iid, interpolation)
return tf.convert_to_tensor(xx, dtype=x.dtype)
# ################################################################################
@keras_export('keras.layers.UpSampling1D')
class UpSampling1D(Layer):
"""Upsampling layer for 1D inputs.
Repeats each temporal step `size` times along the time axis.
Examples:
>>> input_shape = (2, 2, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[ 0 1 2]
[ 3 4 5]]
[[ 6 7 8]
[ 9 10 11]]]
>>> y = tf.keras.layers.UpSampling1D(size=2)(x)
>>> print(y)
tf.Tensor(
[[[ 0 1 2]
[ 0 1 2]
[ 3 4 5]
[ 3 4 5]]
[[ 6 7 8]
[ 6 7 8]
[ 9 10 11]
[ 9 10 11]]], shape=(2, 4, 3), dtype=int64)
Args:
size: Integer. Upsampling factor.
Input shape:
3D tensor with shape: `(batch_size, steps, features)`.
Output shape:
3D tensor with shape: `(batch_size, upsampled_steps, features)`.
"""
def __init__(self, size=2, data_format='None', interpolation='nearest', align_corners=True, **kwargs):
super(UpSampling1D, self).__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
self.size = int(size)
self.input_spec = InputSpec(ndim=3)
self.interpolation = interpolation
if self.interpolation not in {'nearest', 'linear', 'cubic', 'pchip'}:
raise ValueError('`interpolation` argument should be one of `"nearest"` '
'or `"linear"` '
'or `"cubic"` '
'or `"pchip"`.')
self.align_corners = align_corners
def compute_output_shape(self, input_shape):
input_shape = tf.TensorShape(input_shape).as_list()
size = self.size * input_shape[1] if input_shape[1] is not None else None
return tf.TensorShape([input_shape[0], size, input_shape[2]])
def call(self, inputs):
return UpInterpolate1D(inputs,
self.size,
data_format=self.data_format,
interpolation=self.interpolation,
align_corners=self.align_corners)
def get_config(self):
config = {'size': self.size}
base_config = super(UpSampling1D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export('keras.layers.UpSampling2D')
class UpSampling2D(Layer):
"""Upsampling layer for 2D inputs.
Repeats the rows and columns of the data
by `size[0]` and `size[1]` respectively.
Examples:
>>> input_shape = (2, 2, 1, 3)
>>> x = np.arange(np.prod(input_shape)).reshape(input_shape)
>>> print(x)
[[[[ 0 1 2]]
[[ 3 4 5]]]
[[[ 6 7 8]]
[[ 9 10 11]]]]
>>> y = tf.keras.layers.UpSampling2D(size=(1, 2))(x)
>>> print(y)
tf.Tensor(
[[[[ 0 1 2]
[ 0 1 2]]
[[ 3 4 5]
[ 3 4 5]]]
[[[ 6 7 8]
[ 6 7 8]]
[[ 9 10 11]
[ 9 10 11]]]], shape=(2, 2, 2, 3), dtype=int64)
Args:
size: Int, or tuple of 2 integers.
The upsampling factors for rows and columns.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, height, width, channels)` while `channels_first`
corresponds to inputs with shape
`(batch_size, channels, height, width)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
interpolation: A string, one of `nearest` or `bilinear`.
Input shape:
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, rows, cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, rows, cols)`
Output shape:
4D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, upsampled_rows, upsampled_cols, channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, upsampled_rows, upsampled_cols)`
"""
def __init__(self, size=(2, 2), data_format=None, interpolation='nearest', align_corners=True, **kwargs):
super(UpSampling2D, self).__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
self.size = conv_utils.normalize_tuple(size, 2, 'size')
self.input_spec = InputSpec(ndim=4)
self.interpolation = interpolation
if self.interpolation not in {'nearest', 'bilinear', 'linear', 'cubic', 'pchip'}:
raise ValueError('`interpolation` argument should be one of `"nearest"` '
'or `"bilinear"` '
'or `"linear"` '
'or `"cubic"` '
'or `"pchip"`.')
if self.interpolation == 'bilinear':
self.interpolation = 'linear'
self.align_corners = align_corners
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_first':
height = self.size[0] * input_shape[2] if input_shape[2] is not None else None
width = self.size[1] * input_shape[3] if input_shape[3] is not None else None
return tensor_shape.TensorShape([input_shape[0], input_shape[1], height, width])
else:
height = self.size[0] * input_shape[1] if input_shape[1] is not None else None
width = self.size[1] * input_shape[2] if input_shape[2] is not None else None
return tensor_shape.TensorShape([input_shape[0], height, width, input_shape[3]])
def call(self, inputs):
return UpInterpolate2D(inputs,
self.size,
data_format=self.data_format,
interpolation=self.interpolation,
align_corners=self.align_corners)
def get_config(self):
config = {'size': self.size, 'data_format': self.data_format, 'interpolation': self.interpolation}
base_config = super(UpSampling2D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@keras_export('keras.layers.UpSampling3D')
class UpSampling3D(Layer):
"""Upsampling layer for 3D inputs.
Repeats the 1st, 2nd and 3rd dimensions
of the data by `size[0]`, `size[1]` and `size[2]` respectively.
Examples:
>>> input_shape = (2, 1, 2, 1, 3)
>>> x = tf.constant(1, shape=input_shape)
>>> y = tf.keras.layers.UpSampling3D(size=2)(x)
>>> print(y.shape)
(2, 2, 4, 2, 3)
Args:
size: Int, or tuple of 3 integers.
The upsampling factors for dim1, dim2 and dim3.
data_format: A string,
one of `channels_last` (default) or `channels_first`.
The ordering of the dimensions in the inputs.
`channels_last` corresponds to inputs with shape
`(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)`
while `channels_first` corresponds to inputs with shape
`(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)`.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
If you never set it, then it will be "channels_last".
Input shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, dim1, dim2, dim3, channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, dim1, dim2, dim3)`
Output shape:
5D tensor with shape:
- If `data_format` is `"channels_last"`:
`(batch_size, upsampled_dim1, upsampled_dim2, upsampled_dim3, channels)`
- If `data_format` is `"channels_first"`:
`(batch_size, channels, upsampled_dim1, upsampled_dim2, upsampled_dim3)`
"""
def __init__(self,
size=(2, 2, 2),
data_format=None,
interpolation='nearest',
align_corners=True,
**kwargs):
super(UpSampling3D, self).__init__(**kwargs)
self.data_format = conv_utils.normalize_data_format(data_format)
self.size = conv_utils.normalize_tuple(size, 3, 'size')
self.input_spec = InputSpec(ndim=5)
self.interpolation = interpolation
if interpolation not in {'nearest', 'trilinear', 'linear', 'cubic', 'pchip'}:
raise ValueError('`interpolation` argument should be one of `"nearest"` '
'or `"trilinear"` '
'or `"linear"` '
'or `"cubic"` '
'or `"pchip"`.')
if self.interpolation == 'trilinear':
self.interpolation = 'linear'
self.align_corners = align_corners
def compute_output_shape(self, input_shape):
input_shape = tensor_shape.TensorShape(input_shape).as_list()
if self.data_format == 'channels_first':
dim1 = self.size[0] * input_shape[2] if input_shape[2] is not None else None
dim2 = self.size[1] * input_shape[3] if input_shape[3] is not None else None
dim3 = self.size[2] * input_shape[4] if input_shape[4] is not None else None
return tensor_shape.TensorShape([input_shape[0], input_shape[1], dim1, dim2, dim3])
else:
dim1 = self.size[0] * input_shape[1] if input_shape[1] is not None else None
dim2 = self.size[1] * input_shape[2] if input_shape[2] is not None else None
dim3 = self.size[2] * input_shape[3] if input_shape[3] is not None else None
return tensor_shape.TensorShape([input_shape[0], dim1, dim2, dim3, input_shape[4]])
def call(self, inputs):
return UpInterpolate3D(inputs,
self.size,
data_format=self.data_format,
interpolation=self.interpolation,
align_corners=self.align_corners)
def get_config(self):
config = {'size': self.size, 'data_format': self.data_format}
base_config = super(UpSampling3D, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
|