File size: 42,237 Bytes
ab9857f
74c6a32
ab9857f
74c6a32
ab9857f
a27d55f
 
 
ab9857f
74c6a32
 
ab9857f
9b94746
74c6a32
9b94746
 
 
 
 
 
 
74c6a32
9b94746
74c6a32
ab9857f
74c6a32
 
 
ab9857f
74c6a32
ab9857f
74c6a32
 
 
 
 
 
 
 
081d04d
74c6a32
 
 
7a8ed91
74c6a32
 
 
 
 
 
 
081d04d
ab9857f
74c6a32
0902b38
ab9857f
 
0902b38
 
 
 
74c6a32
 
ab9857f
74c6a32
ab9857f
74c6a32
 
ab9857f
74c6a32
ab9857f
0902b38
ab9857f
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb4d8e
 
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
 
 
 
8fb4d8e
 
74c6a32
8fb4d8e
0902b38
 
 
 
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0902b38
 
 
74c6a32
 
 
 
0902b38
 
 
 
 
74c6a32
0902b38
74c6a32
 
 
 
0902b38
74c6a32
 
 
 
 
 
 
 
 
 
0902b38
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0902b38
 
 
 
 
74c6a32
 
 
 
 
 
 
 
0902b38
 
 
 
 
 
 
 
 
 
 
 
 
74c6a32
 
 
 
0902b38
 
 
 
74c6a32
 
 
 
 
 
0902b38
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0902b38
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0902b38
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
 
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
286a978
 
74c6a32
286a978
 
 
 
 
74c6a32
286a978
 
 
 
 
 
 
74c6a32
286a978
 
74c6a32
 
 
 
286a978
 
 
74c6a32
 
 
 
 
 
286a978
 
 
74c6a32
 
 
 
 
7a8ed91
74c6a32
 
286a978
74c6a32
 
 
 
286a978
 
 
74c6a32
 
 
 
 
 
 
286a978
74c6a32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
import tensorflow as tf
import tensorflow.keras.backend as K
from scipy.ndimage import generate_binary_structure
from sklearn.utils.extmath import cartesian

from ddmr.utils.operators import soft_threshold, min_max_norm, hard_threshold
from ddmr.utils.constants import EPS_tf
from ddmr.utils.misc import function_decorator

import numpy as np
import warnings

class HausdorffDistanceErosion:
    def __init__(self, ndim=3, nerosion=10, im_shape: [list, tuple] = (64, 64, 64, 1), alpha=2):
        """
        Approximation of the Hausdorff distance based on erosion operations based on the work done by Karimi D., et al.
            Karimi D., et al., "Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural
            Networks". IEEE Transactions on Medical Imaging, 39, 2020. DOI 10.1109/TMI.2019.2930068

        :param ndim: Dimensionality of the images
        :param nerosion: Number of erosion steps. Defaults to 10.
        :param alpha: Parameter to penalize large segmentations. Defaults to 2
        """
        assert len(im_shape) == ndim + 1, "im_shape does not match with ndim. Missing channel dimension?"
        self.ndims = ndim
        axes = np.arange(0, self.ndims).tolist()
        self.before_erosion_transp = [axes[-1], *axes[:-1]]  # [H, W, ..., C] -> [C, H, W, ...]
        self.after_erosion_transp = [*axes[1:], axes[0]]  # [C, H, W, ...] -> [H, W, ..., C]
        self.nerosions = nerosion
        self.sum_range = tf.range(0, self.ndims)

        self.im_shape = im_shape
        self.im_vol = np.prod(im_shape[:-1])
        kernel = generate_binary_structure(self.ndims, 1).astype(int)
        kernel = kernel / np.sum(kernel)
        kernel = kernel[..., np.newaxis, np.newaxis]
        self.kernel = tf.convert_to_tensor(kernel, tf.float32)
        self.k_alpha = [np.power(k, alpha).astype(float) for k in range(1, nerosion + 1)]
        self.conv = getattr(tf.nn, 'conv%dd' % self.ndims)

    def _erode(self, in_tensor):
        indiv_channels = tf.split(in_tensor, self.im_shape[-1], -1)
        res = list()
        with tf.compat.v1.variable_scope('erode', reuse=tf.AUTO_REUSE):
            for ch in indiv_channels:
                res.append(self.conv(tf.expand_dims(ch, 0), self.kernel, [1] * (self.ndims + 2), 'SAME'))
        # out = -tf.nn.max_pool3d(-tf.expand_dims(in_tensor, 0), [3]*self.ndims, [1]*self.ndims, 'SAME', name='HDE_erosion')
        out = tf.concat(res, -1)
        out = tf.squeeze(out, axis=0)
        out = hard_threshold(out, 0.5, name='thresholding')  # soft_threshold(out, 0.5, name='thresholding')
        return out

    def _erosion_distance_single(self, y_true, y_pred):
        diff = tf.math.pow(y_pred - y_true, 2, name='HDE_diff')
        alpha = 2

        ret = 0.
        for k in range(1, self.nerosions+1):
            er = diff
            # k successive erosions
            for j in range(k):
                er = self._erode(er)       # er contains the eroded version along the channels
            ret += tf.reduce_sum(tf.multiply(er, self.k_alpha[k - 1]), self.sum_range, name='HDE_ret')

        return tf.divide(ret, self.im_vol)  # Divide by the image size

    @function_decorator('Hausdorff_erosion__loss')
    def loss(self, y_true, y_pred, name='HDE_loss'):
        batched_dist = tf.map_fn(lambda x: self._erosion_distance_single(x[0], x[1]), (y_true, y_pred),
                                 dtype=tf.float32, name=name+'_map_fn')

        return tf.reduce_mean(batched_dist)

    @function_decorator('Hausdorff_erosion__metric')
    def metric(self, y_true, y_pred):
        return self.loss(y_true, y_pred, name='HDE_metric')

    def debug(self, y_true, y_pred):
        return tf.map_fn(lambda x: self._erosion_distance_single(x[0], x[1]), (y_true, y_pred),
                         dtype=tf.float32, name='HDE_loss_map_fn')


# class HausdorffDiatanceConvolution:
#     def __init__(self, ndim=3, im_shape: tuple = (64, 64, 64, 1), max_kernel_size=9, step_kernel_size=3, alpha=2):
#         """
#         Approximation of the Hausdorff distance based on erosion operations based on the work done by Karimi D., et al.
#             Karimi D., et al., "Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural
#             Networks". IEEE Transactions on Medical Imaging, 39, 2020. DOI 10.1109/TMI.2019.2930068
#
#         :param ndim: Dimensionality of the images
#         :param nerosion: Number of erosion steps. Defaults to 10.
#         :param alpha: Parameter to penalize large segmentations. Defaults to 2
#         """
#         assert len(im_shape) == ndim + 1, "im_shape does not match with ndim. Missing channel dimension?"
#         self.ndims = ndim
#         axes = np.arange(0, self.ndims).tolist()
#         self.before_erosion_transp = [axes[-1], *axes[:-1]]  # [H, W, ..., C] -> [C, H, W, ...]
#         self.after_erosion_transp = [*axes[1:], axes[0]]  # [C, H, W, ...] -> [H, W, ..., C]
#         self.conv = getattr(tf.nn, 'conv%dd' % self.ndims)
#         self.sum_range = tf.range(0, self.ndims)
#
#         self.im_shape = im_shape
#         self.im_vol = np.prod(im_shape[:-1])
#         kernel = generate_binary_structure(self.ndims, 1).astype(int)
#         self.kernel = tf.constant(kernel / np.sum(kernel), tf.float32)
#         self.kernel = tf.expand_dims(tf.expand_dims(self.kernel, -1), -1)   # [H, W, D, C_in, C_out]
#         self.kernel = tf.tile(self.kernel, [*[1]*self.ndims, self.im_shape[-1], self.im_shape[-1]])
#         self.alpha = int(alpha)
#         self.radii = np.arange(1, max_kernel_size, step=step_kernel_size)
#         self.radii_alpha = [np.pow(r, alpha).astype(float) for r in self.radii]
#
#     def soft_diff(self, p, q):
#         return tf.multiply(tf.pow(p - q, 2.), q)
#
#     def body(self, y_true, y_pred):
#

"""
class HausdorffDistanceErosion_2:
    def __init__(self, im_shape, num_erosions, num_dimensions=3, alpha=2., loop_max_iterations=20):
        self.alpha = alpha
        self.ndims = num_dimensions
        self.conv = getattr(tf.nn, 'conv%dd' % self.ndims)

        self.iterator = tf.constant(num_erosions, name='num_erosions')
        self.norm = 1 / np.prod(im_shape)
        self.erosion_kernel = generate_binary_structure(self.ndims, 1).astype(float)
        self.erosion_kernel /= np.sum(self.erosion_kernel)
        self.erosion_kernel = tf.constant( self.erosion_kernel, tf.float32)

        self.loop_max_iterations = loop_max_iterations

    def erosion_sum(self, p, q, k):
        er_tensor = p - q
        er_tensor = tf.pow(er_tensor, 2.)

        def erode(in_tensor):
            # Erosion of in_tensor = Dilation of (1 - in_tensor)
            return self.conv(tf.expand_dims(1. - in_tensor, 0), self.erosion_kernel, [1] * (self.ndims + 2), 'SAME')

        def while_loop_body(i, in_tensor):
            in_tensor = erode(in_tensor)
            i -= 1
            return i, in_tensor

        def while_loop_condition(i, in_tensor):
            return tf.less_equal(i, 1), in_tensor

        er_iterator = tf.constant(k)
        _, er_tensor = tf.while_loop(while_loop_condition, while_loop_body, loop_vars=[er_iterator, er_tensor],
                                     maximum_iterations=self.loop_max_iterations)

        er_tensor *= tf.pow(k, self.alpha)
        return tf.reduce_sum(er_tensor)

    def loss(self, y_true, y_pred):
        hd_distance = tf.constant(0, name='hausdroff_distance')

        def while_loop_body(i, p, q, ret):
            i -= 1
            return i, p, q, ret + self.erosion_sum(p, q, i)

        _, _, _, hd_distance = tf.while_loop(lambda i, p, q, ret: tf.less_equal(i, 1),
                                             while_loop_body,
                                             loop_vars=[self.iterator, y_pred, y_true, hd_distance])
        hd_distance /= self.norm
        return hd_distance

"""


class WeightedHausdorffDistance:
    def __init__(self, input_shape, alpha=-1, threshold=0.5):
        """
        WARNING: Requires a insane amount of memory
        :param input_shape: [H, W, D, C] or [H, W, C]
        :param alpha: Parameter of the generalized mean. Ideally -inf, but then the function becomes less smooth.
        :param threshold: Threshold of segmentations, used in tf.where function
        """
        warnings.warn("This function requires an insane amount of memory")
        self.input_shape = input_shape
        self.dim = len(input_shape[:-1])
        self.ohe_segm = bool(input_shape[-1] > 1)   # One-Hot Encoded segmentations on the channel axis
        aux = np.arange(len(self.input_shape)).tolist()
        self.ohe_transpose = [aux[-1], *aux[:-1]]
        self.alpha = alpha
        self.threshold = threshold
        list_coords = [np.arange(c) for c in self.input_shape[:-1]]
        self.img_loc = tf.convert_to_tensor(cartesian(list_coords), dtype=tf.float32)
        self.max_dist = np.sqrt(np.sum(np.square(self.input_shape[:-1])))      # Largest diagonal

    def pairwise_distance(self, A, B):
        sq_norm_a = tf.reduce_sum(tf.square(A), 1)
        sq_norm_b = tf.reduce_sum(tf.square(B), 1)

        sq_norm_a = tf.reshape(sq_norm_a, [-1, 1])
        sq_norm_b = tf.reshape(sq_norm_b, [1, -1])

        return tf.sqrt(tf.maximum(sq_norm_a - 2 * tf.matmul(A, B, transpose_a=False, transpose_b=True) + sq_norm_b, 0.))

    def hausdorff(self, y_true, y_pred):
        if self.ohe_segm:
            y_true = tf.transpose(y_true, self.ohe_transpose)
            y_pred = tf.transpose(y_pred, self.ohe_transpose)
            hausdorff_per_ch = tf.map_fn(lambda x: self.hausdorff_per_channel(x[0], x[1]), (y_true, y_pred), tf.float32)
            return tf.reduce_mean(hausdorff_per_ch)
        else:
            return self.hausdorff_per_channel(y_true, y_pred)

    def hausdorff_per_channel(self, y_true, y_pred):
        Y = tf.cast(tf.where(y_true > self.threshold), dtype=tf.float32)
        p = K.flatten(y_pred)   # Flatten the predicted segmentation (activation map 'p' in d_WH)

        size_Y = tf.shape(Y)[0]
        S = tf.reduce_sum(p)

        p = tf.squeeze(K.repeat(tf.expand_dims(p, -1), size_Y))
        dist_mat = self.pairwise_distance(self.img_loc, Y)

        term_1 = tf.reduce_sum(p * tf.minimum(dist_mat, 1)) / (S + EPS_tf)

        term_2 = tf.minimum((dist_mat + EPS_tf) / (tf.pow(p, self.alpha) + (EPS_tf / self.max_dist)), 0.)
        term_2 = tf.clip_by_value(term_2, 0., self.max_dist)
        term_2 = tf.reduce_mean(term_2, axis=0)

        return term_1 + term_2

    @function_decorator('Weighted_Hausdorff__loss')
    def loss(self, y_true, y_pred):
        batch_hdist = tf.map_fn(lambda x: self.hausdorff(x[0], x[1]), (y_true, y_pred), dtype=tf.float32)

        return tf.reduce_mean(batch_hdist)

    @function_decorator('Weighted_Hausdorff__metric')
    def metric(self, y_true, y_pred):
        return self.loss(y_true, y_pred)


class NCC:
    def __init__(self, in_shape, eps=EPS_tf):
        self.__shape_size = tf.cast(tf.reduce_prod(in_shape), tf.float32)
        self.__eps = eps

    def ncc(self, y_true, y_pred):
        f_yt = tf.reshape(y_true, [-1])
        f_yp = tf.reshape(y_pred, [-1])
        mean_yt = tf.reduce_mean(f_yt)
        mean_yp = tf.reduce_mean(f_yp)

        n_f_yt = f_yt - mean_yt
        n_f_yp = f_yp - mean_yp
        norm_yt = tf.norm(f_yt, ord='euclidean')
        norm_yp = tf.norm(f_yp, ord='euclidean')
        numerator = tf.reduce_sum(tf.multiply(n_f_yt, n_f_yp))
        denominator = norm_yt * norm_yp + self.__eps
        return tf.math.divide_no_nan(numerator, denominator)

    @function_decorator('NCC__loss')
    def loss(self, y_true, y_pred):
        # According to the documentation, the loss returns a scalar
        # Ref: https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
        return tf.reduce_mean(tf.map_fn(lambda x: 1 - self.ncc(x[0], x[1]), (y_true, y_pred), tf.float32))

    @function_decorator('NCC__metric')
    def metric(self, y_true, y_pred):
        return tf.reduce_mean(tf.map_fn(lambda x: self.ncc(x[0], x[1]), (y_true, y_pred), tf.float32))


def ncc(y_true, y_pred):
    y_true = K.flatten(K.cast(y_true, 'float32'))
    y_pred = K.flatten(K.cast(y_pred, 'float32'))

    mean_true = K.mean(y_true)
    mean_pred = K.mean(y_pred)

    std_true = K.std(y_true)
    std_pred = K.std(y_pred)

    num = K.mean((y_true - mean_true) * (y_pred - mean_pred))
    den = std_true * std_pred + EPS_tf
    batch_ncc = num / den

    return K.mean(batch_ncc)


class StructuralSimilarity:
    # Based on https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/losses/dssim.py
    def __init__(self, k1=0.01, k2=0.03,
                 patch_size=32, dynamic_range=1., overlap=0.0, dim=3,
                 alpha=1., beta=1., gamma=1.,
                 **kwargs):
        """
        Structural (Di)Similarity Index Measure:

        :param k1: Internal parameter. Defaults to 0.01
        :param k2: Internal parameter. Defaults to 0.02
        :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
        :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
        :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
        :param dim: Data dimensionality. Must be {1, 2, 3}. Defaults to 3.
        :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
                                    structure measures. Default to 1.
        """
        assert (dim > 0) and (dim < 4), 'Invalid dimension. It must be 1, 2, or 3'
        assert overlap < 1., 'Invalid overlap. It must be in the range [0., 1.)'
        self.c1 = (k1 * dynamic_range) ** 2
        self.c2 = (k2 * dynamic_range) ** 2
        self.c3 = self.c2 / 2
        self.alpha = tf.cast(alpha, tf.float32)
        self.beta = tf.cast(beta, tf.float32)
        self.gamma = tf.cast(gamma, tf.float32)

        self.kernel_shape = [1] + [patch_size] * dim + [1]
        stride = int(patch_size * (1 - overlap))
        self.stride = [1] + [stride if stride else 1] * dim + [1]
        self.dim = dim
        self.patch_extractor = None
        self.reduce_axis = list()
        if dim == 2:
            self.patch_extractor = tf.extract_image_patches
            self.reduce_axis = [1, 2]
        elif dim == 3:
            self.patch_extractor = tf.extract_volume_patches
            self.reduce_axis = [1, 2, 3]
        else:
            raise ValueError('Invalid dimension value. Expected 2 or 3')

        if patch_size == -1:
            # Don't extract patches
            self.dim = 1

        self.L = None   # Luminance
        self.C = None   # Contrast
        self.S = None   # Structure

    def __int_shape(self, x):
        return tf.keras.backend.int_shape(x) if tf.keras.backend.backend() == 'tensorflow' else tf.keras.backend.shape(x)

    def ssim(self, y_true, y_pred):
        if self.dim > 1:
            # Don't use for training. The gradient doesn't backpropagate through the patch extractors
            # patches: [B, out_rows, out_cols, ..., krows*kcols*...*channels] -> out_rows * out_cols * ... = nb patches
            patches_true = self.patch_extractor(y_true, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_true')
            patches_pred = self.patch_extractor(y_pred, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_pred')
        else:
            patches_true = y_true
            patches_pred = y_pred

        #bs, w, h, d, *c = self.__int_shape(patches_pred)
        #patches_true = tf.reshape(patches_true, [-1, w, h, d, tf.reduce_prod(c)])
        #patches_pred = tf.reshape(patches_pred, [-1, w, h, d, tf.reduce_prod(c)])

        # Mean
        u_true = tf.reduce_mean(patches_true, axis=-1)
        u_pred = tf.reduce_mean(patches_pred, axis=-1)

        # Variance
        v_true = tf.math.reduce_variance(patches_true, axis=-1)
        v_pred = tf.math.reduce_variance(patches_pred, axis=-1)

        # Standard dev.
        s_true = tf.sqrt(v_true)
        s_pred = tf.sqrt(v_pred)

        # Covariance
        covar = tf.reduce_mean(patches_true * patches_pred, axis=-1) - u_true * u_pred

        # SSIM
        self.L = (2 * u_true * u_pred + self.c1) / (tf.square(u_true) + tf.square(u_pred) + self.c1)
        self.C = (2 * s_true * s_pred + self.c2) / (v_true + v_pred + self.c2)
        self.S = (covar + self.c3) / (s_true * s_pred + self.c3)
        self.L = tf.reduce_mean(self.L, axis=self.reduce_axis)
        self.C = tf.reduce_mean(self.C, axis=self.reduce_axis)
        self.S = tf.reduce_mean(self.S, axis=self.reduce_axis)

        return tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)

    @function_decorator('SSIM__loss')
    def loss(self, y_true, y_pred):
        return tf.reduce_mean((1. - self.ssim(y_true, y_pred)) / 2.0)

    @function_decorator('SSIM__metric')
    def metric(self, y_true, y_pred):
        return tf.reduce_mean(self.ssim(y_true, y_pred))


class StructuralSimilarity_simplified:
    # Based on https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/losses/dssim.py
    def __init__(self, k1=0.01, k2=0.03,
                 patch_size=32, dynamic_range=1., overlap=0.0, dim=3,
                 alpha=1., beta=1., gamma=1.,
                 **kwargs):
        """
        Structural (Di)Similarity Index Measure:

        :param k1: Internal parameter. Defaults to 0.01
        :param k2: Internal parameter. Defaults to 0.02
        :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
        :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
        :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
        :param dim: Data dimensionality. Must be {1, 2, 3}. Defaults to 3.
        :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
                                    structure measures. Default to 1.
        """
        assert (dim > 0) and (dim < 4), 'Invalid dimension. It must be 1, 2, or 3'
        assert overlap < 1., 'Invalid overlap. It must be in the range [0., 1.)'
        self.c1 = (k1 * dynamic_range) ** 2
        self.c2 = (k2 * dynamic_range) ** 2
        self.c3 = self.c2 / 2
        self.alpha = tf.cast(alpha, tf.float32)
        self.beta = tf.cast(beta, tf.float32)
        self.gamma = tf.cast(gamma, tf.float32)

        self.kernel_shape = [1] + [patch_size] * dim + [1]
        stride = int(patch_size * (1 - overlap))
        self.stride = [1] + [stride if stride else 1] * dim + [1]
        self.dim = dim
        self.patch_extractor = None
        if dim == 2:
            self.patch_extractor = tf.extract_image_patches
        elif dim == 3:
            self.patch_extractor = tf.extract_volume_patches

        if patch_size == -1:
            # Don't extract patches
            self.dim = 1

        self.L = None   # Luminance
        self.C = None   # Contrast
        self.S = None   # Structure

    def __int_shape(self, x):
        return tf.keras.backend.int_shape(x) if tf.keras.backend.backend() == 'tensorflow' else tf.keras.backend.shape(x)

    def ssim(self, y_true, y_pred):
        if self.dim > 1:
            # Don't use for training. The gradient doesn't backpropagate through the patch extractors
            # patches: [B, out_rows, out_cols, ..., krows*kcols*...*channels] -> out_rows * out_cols * ... = nb patches
            patches_true = self.patch_extractor(y_true, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_true')
            patches_pred = self.patch_extractor(y_pred, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_pred')
        else:
            patches_true = y_true
            patches_pred = y_pred

        #bs, w, h, d, *c = self.__int_shape(patches_pred)
        #patches_true = tf.reshape(patches_true, [-1, w, h, d, tf.reduce_prod(c)])
        #patches_pred = tf.reshape(patches_pred, [-1, w, h, d, tf.reduce_prod(c)])

        # Mean
        u_true = tf.reduce_mean(patches_true, axis=-1)
        u_pred = tf.reduce_mean(patches_pred, axis=-1)

        # Variance
        v_true = tf.math.reduce_variance(patches_true, axis=-1)
        v_pred = tf.math.reduce_variance(patches_pred, axis=-1)

        # Covariance
        covar = tf.reduce_mean(patches_true * patches_pred, axis=-1) - u_true * u_pred

        # return tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)
        num = (2 * u_true * u_pred + self.c1) * (2 * covar + self.c2)
        den = ((tf.square(u_true) + tf.square(u_pred) + self.c1) * (v_pred + v_true + self.c2))
        return num / den

    @function_decorator('SSIM_simple__loss')
    def loss(self, y_true, y_pred):
        return tf.reduce_mean((1. - self.ssim(y_true, y_pred)) / 2.0)

    @function_decorator('SSIM_simple__metric')
    def metric(self, y_true, y_pred):
        return tf.reduce_mean(self.ssim(y_true, y_pred))


class MultiScaleStructuralSimilarity(StructuralSimilarity):
    def __init__(self, k1=0.01, k2=0.03, patch_size=3, dynamic_range=1., overlap=0.0, dim=3, nscales=3, alpha=1., beta=1., gamma=1.):
        """
        Multi Scale Structural (Di)Similarity Index Measure:
        Ref:    [1] https://www.cns.nyu.edu/pub/eero/wang03b.pdf

        :param k1: Internal parameter. Defaults to 0.01
        :param k2: Internal parameter. Defaults to 0.02
        :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
        :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
        :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
        :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
        :param nscales: Number of scales to analyze. Defaults to 3.
        :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
                                    structure measures. Default to 1.
        """
        assert dim > 1, 'Cannot be used with 1-D data'
        super(MultiScaleStructuralSimilarity, self).__init__(k1=k1, k2=k2, patch_size=patch_size,
                                                             dynamic_range=dynamic_range, overlap=overlap, dim=dim,
                                                             alpha=alpha, beta=beta, gamma=gamma)
        self.num_scales = nscales
        self.avg_pool = getattr(tf.nn, 'avg_pool%dd' % dim)
        self.ds_stride = self.ds_kernel = [1] + [2]*dim + [1]

        # In [1] these are set to the same value at the same scales and normalized across scales
        self.alpha = self.beta = self.gamma = 1 / nscales

    def _cond(self, cs_prod, scale_level, y_true, y_pred):
        return tf.less_equal(scale_level, self.num_scales)

    def _iteration(self, cs_prod, scale_level, y_true, y_pred):
        super(MultiScaleStructuralSimilarity, self).ssim(y_true, y_pred)
        cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma))
        y_true = self.avg_pool(y_true, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
        y_pred = self.avg_pool(y_pred, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
        scale_level += 1
        return cs_prod, scale_level, y_true, y_pred,

    def ssim(self, y_true, y_pred):
        return self.ms_ssim(y_true, y_pred)

    def ms_ssim(self, y_true, y_pred):
        cs_prod = tf.constant(1.)
        scale_level = tf.constant(1.)
        cs_prod, *_ = tf.while_loop(self._cond,
                                    self._iteration,
                                    (cs_prod, scale_level, y_true, y_pred),
                                    (cs_prod.get_shape(), scale_level.get_shape(),
                                     tf.TensorShape(([1] + [None] * self.dim + [1])),
                                     tf.TensorShape(([1] + [None] * self.dim + [1]))))

        ms_ssim = tf.reduce_mean(tf.pow(self.L, self.alpha)) * cs_prod

        return tf.reduce_mean(ms_ssim)

    @function_decorator('MS_SSIM__loss')
    def loss(self, y_true, y_pred):
        return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred)) / 2.0)


class MultiScaleStructuralSimilarity_v2(StructuralSimilarity):
    def __init__(self, k1=0.01, k2=0.03, patch_size=3, dynamic_range=1., overlap=0.0, dim=3, nscales=3, alpha=1., beta=1., gamma=1.):
        """
        Multi Scale Structural (Di)Similarity Index Measure:
        Ref:    [1] https://www.cns.nyu.edu/pub/eero/wang03b.pdf

        :param k1: Internal parameter. Defaults to 0.01
        :param k2: Internal parameter. Defaults to 0.02
        :param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
        :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
        :param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
        :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
        :param nscales: Number of scales to analyze. Defaults to 3.
        :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
                                    structure measures. Default to 1.
        """
        assert dim > 1, 'Cannot be used with 1-D data'
        super(MultiScaleStructuralSimilarity_v2, self).__init__(k1=k1, k2=k2, patch_size=patch_size,
                                                                dynamic_range=dynamic_range, overlap=overlap, dim=dim,
                                                                alpha=alpha, beta=beta, gamma=gamma)
        self.num_scales = nscales
        self.avg_pool = getattr(tf.nn, 'avg_pool%dd' % dim)
        self.ds_stride = self.ds_kernel = [1] + [2]*dim + [1]

        # In [1] these are set to the same value at the same scales and normalized across scales
        self.alpha = self.beta = self.gamma = 1 / nscales

    def _cond(self, cs_prod, scale_level, y_true, y_pred):
        return tf.less_equal(scale_level, self.num_scales)

    def _iteration(self, cs_prod, scale_level, y_true, y_pred):
        super(MultiScaleStructuralSimilarity_v2, self).ssim(y_true, y_pred)
        cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma))
        y_true = self.avg_pool(y_true, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
        y_pred = self.avg_pool(y_pred, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
        scale_level += 1
        return cs_prod, scale_level, y_true, y_pred,

    def ssim(self, y_true, y_pred):
        return self.ms_ssim(y_true, y_pred)

    def ms_ssim(self, y_true, y_pred):
        cs_prod = tf.constant(1.)
        scale_level = tf.constant(1.)
        cs_prod, *_ = tf.while_loop(self._cond,
                                    self._iteration,
                                    (cs_prod, scale_level, y_true, y_pred),
                                    (cs_prod.get_shape(), scale_level.get_shape(),
                                     tf.TensorShape(([1] + [None] * self.dim + [1])),
                                     tf.TensorShape(([1] + [None] * self.dim + [1]))))

        ms_ssim = tf.reduce_mean(tf.pow(self.L, self.alpha)) * cs_prod

        return tf.reduce_mean(ms_ssim)

    @function_decorator('MS_SSIM_v2__loss')
    def loss(self, y_true, y_pred):
        return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred)) / 2.0)


class StructuralSimilarityGaussian:
    # This is equivalent to StructuralSimilarity(patch_size=img_size)
    def __init__(self, k1=0.01, k2=0.03, dynamic_range=1., gauss_sigma=5., dim=3, alpha=1., beta=1., gamma=1.):
        """
        SSIM using Gaussian filter to approximate the statistics of the images
        Ref:    https://www.cns.nyu.edu/pub/eero/wang03b.pdf
                https://arxiv.org/pdf/1511.08861.pdf
                https://github.com/NVlabs/PL4NN/blob/master/src/loss.py

        :param k1: Internal parameter. Defaults to 0.01
        :param k2: Internal parameter. Defaults to 0.02
        :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
        :param gauss_sigma: Sigma of the Gaussian filter. Defaults to 1.5.
        :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
        :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
                                    structure measures. Default to 1.
        """
        self.c1 = (k1 * dynamic_range) ** 2
        self.c2 = (k2 * dynamic_range) ** 2
        self.c3 = self.c2 / 2
        self.alpha = tf.cast(alpha, tf.float32)
        self.beta = tf.cast(beta, tf.float32)
        self.gamma = tf.cast(gamma, tf.float32)
        self.dim = dim
        self.convDN = getattr(tf.nn, 'conv%dd' % dim)
        self.sigma = gauss_sigma

    def build_gaussian_filter(self, size, sigma, num_channels=1):
        range_1d = tf.range(-(size/2) + 1, size//2 + 1)
        g_1d = tf.math.exp(-1.0 * tf.pow(range_1d, 2) / (2. * tf.pow(sigma, 2)))
        g_1d_expanded = tf.expand_dims(g_1d, -1)
        iterator = tf.constant(1)
        self.__GF = tf.while_loop(lambda iterator, g_1d: tf.less(iterator, self.dim),
                                  lambda iterator, g_1d: (iterator + 1, tf.expand_dims(g_1d, -1) * tf.transpose(g_1d_expanded)),
                                  [iterator, g_1d],
                                  [iterator.get_shape(), tf.TensorShape([None]*self.dim)],  # Shape invariants
                                  back_prop=False,
                                  )[-1]

        self.__GF = tf.divide(self.__GF, tf.reduce_sum(self.__GF))  # Normalization
        self.__GF = tf.reshape(self.__GF, (*[size]*self.dim, 1, 1))  # Add Ch_in and Ch_out for convolution
        self.__GF = tf.tile(self.__GF, (*[1] * self.dim, num_channels, num_channels,))

    def format_data(self, in_data):
        ret_val = in_data
        if self.dim == 3:
            ret_val = tf.transpose(ret_val, [0, 3, 1, 2, 4])
        return ret_val

    def ssim(self, y_true, y_pred):
        self.build_gaussian_filter(y_pred.shape[1], self.sigma)
        y_true_tr = self.format_data(y_true)
        y_pred_tr = self.format_data(y_pred)

        u_true = self.convDN(y_true_tr, self.__GF, [1] * (self.dim + 2), 'SAME')
        u_pred = self.convDN(y_pred_tr, self.__GF, [1] * (self.dim + 2), 'SAME')

        v_true = self.convDN(tf.pow(y_true_tr, 2), self.__GF, [1] * (self.dim + 2), 'SAME') - tf.pow(u_true, 2)
        v_pred = self.convDN(tf.pow(y_pred_tr, 2), self.__GF, [1] * (self.dim + 2), 'SAME') - tf.pow(u_pred, 2)
        covar = self.convDN(tf.multiply(y_true_tr, y_pred_tr), self.__GF, [1] * (self.dim + 2), 'SAME') - u_true * u_pred

        self.L = (2 * u_true * u_pred + self.c1) / (tf.square(u_true) + tf.square(u_pred) + self.c1)
        self.C = (2 * tf.sqrt(v_true) * tf.sqrt(v_pred) + self.c2) / (v_true + v_pred + self.c2)
        self.S = (covar + self.c3) / (tf.sqrt(v_true) * tf.sqrt(v_pred) + self.c3)
        ssim = tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)

        return tf.reduce_mean(ssim)

    @function_decorator('SSIM_Gaus__loss')
    def loss(self, y_true, y_pred):
        return tf.reduce_mean((1. - self.ssim(y_true, y_pred))/2.)

    @function_decorator('SSIM_Gaus__metric')
    def metric(self, y_true, y_pred):
        return tf.reduce_mean(self.ssim(y_true, y_pred))


class MultiScaleStructuralSimilarityGaussian(StructuralSimilarityGaussian):
    def __init__(self, k1=0.01, k2=0.03, dynamic_range=1., gauss_sigma=5., dim=3, nscales=3, alpha=1., beta=1., gamma=1.):
        """
        Multi Scale SSIM inheriting from StructuralSimilarityGaussian classed
        Ref:    https://www.cns.nyu.edu/pub/eero/wang03b.pdf
                https://arxiv.org/pdf/1511.08861.pdf
                https://github.com/NVlabs/PL4NN/blob/master/src/loss.py

        :param k1: Internal parameter. Defaults to 0.01
        :param k2: Internal parameter. Defaults to 0.02
        :param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
        :param gauss_sigma: Sigma of the Gaussian filter. Defaults to 1.5.
        :param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
        :param nscales: Number of scales to analyze. Defaults to 3.
        :param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
                                    structure measures. Default to 1.
        """
        super(MultiScaleStructuralSimilarityGaussian, self).__init__(k1=k1, k2=k2, dynamic_range=dynamic_range,
                                                                     gauss_sigma=gauss_sigma, dim=dim,
                                                                     alpha=alpha, beta=beta, gamma=gamma)
        self.__num_scales = nscales

    # # If using the Gaussian approximation of the pyramid MS approach described in https://arxiv.org/pdf/1511.08861.pdf
    # def build_sigma_scales(self):
    #     iterator = tf.constant(0)
    #     scales = tf.expand_dims(self.sigma, -1)
    #     last_sigma = scales
    #     self.sigma_scales = tf.while_loop(lambda iterator, last_sigma, scales: tf.less_equal(iterator, self.__num_scales),
    #                                        lambda iterator, last_sigma, scales: (iterator + 1, tf.concat([scales, last_sigma/2], 0), last_sigma/2),
    #                                        [iterator, last_sigma, scales])[-1]
    #
    # def build_gaussian_filters_scales(self, size):
    #    self.__GFS = tf.map_fn(lambda sigma: self.build_gaussian_filter(size, sigma), self.sigma, tf.float32)

    def _iteration(self, cs_prod, scale_level, y_true, y_pred):
        # Compute the SSIM, so CS and L have the correct value
        self.ssim(y_true, y_pred)

        cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma))
        scale_level += 1

        # Downsample the images to half the resolution for the next iteration
        y_true = tf.nn.avg_pool(y_true, [1] + [2]*self.dim + [1], [1] + [2]*self.dim + [1], 'SAME')
        y_pred = tf.nn.avg_pool(y_true, [1] + [2]*self.dim + [1], [1] + [2]*self.dim + [1], 'SAME')
        return cs_prod, scale_level, y_true, y_pred

    def ms_ssim(self, y_true, y_pred):
        scale_level = tf.constant(0.)
        cs_prod = tf.constant(1.)
        cs_prod, *_ = tf.while_loop(tf.less(scale_level, self.__num_scales),
                                    self._iteration,
                                    (cs_prod, scale_level, y_true, y_pred),
                                    (cs_prod.get_shape(), scale_level.get_shape(),
                                     tf.TensorShape(([1] + [None]*self.dim + [1])),
                                     tf.TensorShape(([1] + [None]*self.dim + [1]))))
        # L is taken from the last scale
        return tf.reduce_mean(tf.pow(self.L, self.alfa)) * cs_prod

    @function_decorator('MS_SSIM_Gaus__metric')
    def loss(self, y_true, y_pred):
        return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred))/2.)


class DICEScore:
    def __init__(self, input_shape: list):
        """
        DICE Score.
        :param input_shape: Shape of the input image, without the batch dimension, e.g., 2D: [H, W, C], 3D: [H, W, D, C]
        """
        self.axes = list(range(1, len(input_shape)))  # The list will not include the channel axis [1, ..., num_dims)

    def dice(self, y_true, y_pred):
        numerator = 2 * tf.reduce_sum(y_true * y_pred, self.axes)
        denominator = tf.reduce_sum(y_true + y_pred, self.axes)
        return tf.reduce_mean(tf.div_no_nan(numerator, denominator))

    @function_decorator('DICE__loss')
    def loss(self, y_true, y_pred):
        return 1 - 2 * tf.reduce_mean(self.dice(y_true, y_pred))

    @function_decorator('DICE__metric')
    def metric(self, y_true, y_pred):
        return tf.reduce_mean(self.dice(y_true, y_pred))


class GeneralizedDICEScore:
    def __init__(self, input_shape: list, num_labels: int=None):
        """
        Generalized DICE Score. Implementation based on Carole H. Sudre, et al., "Generalised DIce Overlap as a Deep
        Learning Los Function for Highly Unbalanced Segmentations" https://arxiv.org/abs/1707.03237
        :param input_shape: Shape of the input image, without the batch dimension, e.g., 2D: [H, W, C], 3D: [H, W, D, C]
        """
        self.smooth = 1e-10  # If y_pred = y_true = null -> dice should be 1
        self.num_labels = num_labels
        if input_shape[-1] > 1:
            try:
                self.flat_shape = [-1, np.prod(np.asarray(input_shape[:-1])), input_shape[-1]]
            except TypeError as err:
                self.flat_shape = [-1, None, input_shape[-1]]
            self.cardinal_encoded = False
        elif num_labels is not None:
            try:
                self.flat_shape = [-1, np.prod(np.asarray(input_shape[:-1])), input_shape[-1]]
            except TypeError as err:
                self.flat_shape = [-1, None, input_shape[-1]]
            self.cardinal_enc_shape = [-1, *input_shape[:-1]]
            self.cardinal_encoded = True
            warnings.warn('Differentiable cardinal encoding not yet implemented')
        else:
            raise ValueError('If input_shape does not correspond to cardinally encoded,'
                             'then num_labels must be provided')

    def one_hot_encoding(self, in_img, name=''):
        # TODO: Test if differentiable!
        labels, indices = tf.unique(tf.reshape(in_img, [-1]), tf.int32, name=name+'_unique')
        one_hot = tf.one_hot(indices, self.num_labels, name=name + '_one_hot')
        one_hot = tf.reshape(one_hot, self.cardinal_enc_shape + [self.num_labels], name=name + '_reshape')
        one_hot = tf.slice(one_hot, [0] * len(self.cardinal_enc_shape) + [1], [-1] * (len(self.cardinal_enc_shape) + 1),
                           name=name + '_remove_bg')
        return one_hot

    def weigthed_dice(self, y_true, y_pred):
        # y_true = [B, -1, L]
        # y_pred = [B, -1, L]
        # if self.cardinal_encoded:
        #     y_true = self.one_hot_encoding(y_true, name='GDICE_one_hot_encoding_y_true')
        #     y_pred = self.one_hot_encoding(y_pred, name='GDICE_one_hot_encoding_y_pred')
        y_true = tf.reshape(y_true, self.flat_shape, name='GDICE_reshape_y_true')    # Flatten along the volume dimensions
        y_pred = tf.reshape(y_pred, self.flat_shape, name='GDICE_reshape_y_pred')    # Flatten along the volume dimensions

        size_y_true = tf.reduce_sum(y_true, axis=1, name='GDICE_size_y_true')
        size_y_pred = tf.reduce_sum(y_pred, axis=1, name='GDICE_size_y_pred')
        w = tf.math.divide_no_nan(1., tf.pow(size_y_true, 2), name='GDICE_weight')
        numerator = w * tf.reduce_sum(y_true * y_pred, axis=1)
        denominator = w * (size_y_true + size_y_pred)
        return tf.div_no_nan(2 * tf.reduce_sum(numerator, axis=-1) + self.smooth, tf.reduce_sum(denominator, axis=-1) + self.smooth)

    def macro_dice(self, y_true, y_pred):
        # y_true = [B, -1, L]
        # y_pred = [B, -1, L]
        # if self.cardinal_encoded:
        #     y_true = self.one_hot_encoding(y_true, name='GDICE_one_hot_encoding_y_true')
        #     y_pred = self.one_hot_encoding(y_pred, name='GDICE_one_hot_encoding_y_pred')
        y_true = tf.reshape(y_true, self.flat_shape, name='GDICE_reshape_y_true')    # Flatten along the volume dimensions
        y_pred = tf.reshape(y_pred, self.flat_shape, name='GDICE_reshape_y_pred')    # Flatten along the volume dimensions

        size_y_true = tf.reduce_sum(y_true, axis=1, name='GDICE_size_y_true')
        size_y_pred = tf.reduce_sum(y_pred, axis=1, name='GDICE_size_y_pred')
        numerator = tf.reduce_sum(y_true * y_pred, axis=1)
        denominator = (size_y_true + size_y_pred)
        return tf.div_no_nan(2 * numerator + self.smooth, denominator + self.smooth)

    @function_decorator('GeneralizeDICE__loss')
    def loss(self, y_true, y_pred):
        return 1 - tf.reduce_mean(self.weigthed_dice(y_true, y_pred))

    @function_decorator('GeneralizeDICE__metric')
    def metric(self, y_true, y_pred):
        return tf.reduce_mean(self.weigthed_dice(y_true, y_pred))

    @function_decorator('GeneralizeDICE__loss_macro')
    def loss_macro(self, y_true, y_pred):
        return 1 - tf.reduce_mean(self.macro_dice(y_true, y_pred))

    @function_decorator('GeneralizeDICE__metric_macro')
    def metric_macro(self, y_true, y_pred):
        return tf.reduce_mean(self.macro_dice(y_true, y_pred))


def target_registration_error(y_true, y_pred, average=True):
    '''
    Target Registration Error measured as the average distance between y_true and y_pred
    :param y_true: [N, D] target points
    :param y_pred: [N, D] predicted points
    :param average: return the average TRE or an [N,] array
    :return: averate TRE or [N,] array of TRE for each point
    '''
    assert y_true.shape == y_pred.shape, "y_true and y_pred must have the same shape"
    if average:
        return tf.reduce_mean(tf.linalg.norm(y_pred - y_true, axis=1))
    else:
        return tf.linalg.norm(y_pred - y_true, axis=1)

# TODO: tensorflow-graphic has an implementation of Hausdorff ditance.
#  However, this is not where it should and I can't find it
# def HausdorffDistance_exact(y_true, y_pred, ohe=False, name='hd_exact'):
#     if ohe:
#         y_true = tf.transpose(y_true, [0, 4, 1, 2, 3])
#         y_pred = tf.transpose(y_pred, [0, 4, 1, 2, 3])
#     y_true_coords = tf.where(y_true)
#     y_pred_coords = tf.where(y_pred)
#
#     return tfg_nn.loss.hausdorff_distance.evaluate(y_true_coords, y_pred_coords, name=name)