File size: 42,237 Bytes
ab9857f 74c6a32 ab9857f 74c6a32 ab9857f a27d55f ab9857f 74c6a32 ab9857f 9b94746 74c6a32 9b94746 74c6a32 9b94746 74c6a32 ab9857f 74c6a32 ab9857f 74c6a32 ab9857f 74c6a32 081d04d 74c6a32 7a8ed91 74c6a32 081d04d ab9857f 74c6a32 0902b38 ab9857f 0902b38 74c6a32 ab9857f 74c6a32 ab9857f 74c6a32 ab9857f 74c6a32 ab9857f 0902b38 ab9857f 74c6a32 8fb4d8e 74c6a32 8fb4d8e 74c6a32 8fb4d8e 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 0902b38 74c6a32 286a978 74c6a32 286a978 74c6a32 286a978 74c6a32 286a978 74c6a32 286a978 74c6a32 286a978 74c6a32 286a978 74c6a32 7a8ed91 74c6a32 286a978 74c6a32 286a978 74c6a32 286a978 74c6a32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
import tensorflow as tf
import tensorflow.keras.backend as K
from scipy.ndimage import generate_binary_structure
from sklearn.utils.extmath import cartesian
from ddmr.utils.operators import soft_threshold, min_max_norm, hard_threshold
from ddmr.utils.constants import EPS_tf
from ddmr.utils.misc import function_decorator
import numpy as np
import warnings
class HausdorffDistanceErosion:
def __init__(self, ndim=3, nerosion=10, im_shape: [list, tuple] = (64, 64, 64, 1), alpha=2):
"""
Approximation of the Hausdorff distance based on erosion operations based on the work done by Karimi D., et al.
Karimi D., et al., "Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural
Networks". IEEE Transactions on Medical Imaging, 39, 2020. DOI 10.1109/TMI.2019.2930068
:param ndim: Dimensionality of the images
:param nerosion: Number of erosion steps. Defaults to 10.
:param alpha: Parameter to penalize large segmentations. Defaults to 2
"""
assert len(im_shape) == ndim + 1, "im_shape does not match with ndim. Missing channel dimension?"
self.ndims = ndim
axes = np.arange(0, self.ndims).tolist()
self.before_erosion_transp = [axes[-1], *axes[:-1]] # [H, W, ..., C] -> [C, H, W, ...]
self.after_erosion_transp = [*axes[1:], axes[0]] # [C, H, W, ...] -> [H, W, ..., C]
self.nerosions = nerosion
self.sum_range = tf.range(0, self.ndims)
self.im_shape = im_shape
self.im_vol = np.prod(im_shape[:-1])
kernel = generate_binary_structure(self.ndims, 1).astype(int)
kernel = kernel / np.sum(kernel)
kernel = kernel[..., np.newaxis, np.newaxis]
self.kernel = tf.convert_to_tensor(kernel, tf.float32)
self.k_alpha = [np.power(k, alpha).astype(float) for k in range(1, nerosion + 1)]
self.conv = getattr(tf.nn, 'conv%dd' % self.ndims)
def _erode(self, in_tensor):
indiv_channels = tf.split(in_tensor, self.im_shape[-1], -1)
res = list()
with tf.compat.v1.variable_scope('erode', reuse=tf.AUTO_REUSE):
for ch in indiv_channels:
res.append(self.conv(tf.expand_dims(ch, 0), self.kernel, [1] * (self.ndims + 2), 'SAME'))
# out = -tf.nn.max_pool3d(-tf.expand_dims(in_tensor, 0), [3]*self.ndims, [1]*self.ndims, 'SAME', name='HDE_erosion')
out = tf.concat(res, -1)
out = tf.squeeze(out, axis=0)
out = hard_threshold(out, 0.5, name='thresholding') # soft_threshold(out, 0.5, name='thresholding')
return out
def _erosion_distance_single(self, y_true, y_pred):
diff = tf.math.pow(y_pred - y_true, 2, name='HDE_diff')
alpha = 2
ret = 0.
for k in range(1, self.nerosions+1):
er = diff
# k successive erosions
for j in range(k):
er = self._erode(er) # er contains the eroded version along the channels
ret += tf.reduce_sum(tf.multiply(er, self.k_alpha[k - 1]), self.sum_range, name='HDE_ret')
return tf.divide(ret, self.im_vol) # Divide by the image size
@function_decorator('Hausdorff_erosion__loss')
def loss(self, y_true, y_pred, name='HDE_loss'):
batched_dist = tf.map_fn(lambda x: self._erosion_distance_single(x[0], x[1]), (y_true, y_pred),
dtype=tf.float32, name=name+'_map_fn')
return tf.reduce_mean(batched_dist)
@function_decorator('Hausdorff_erosion__metric')
def metric(self, y_true, y_pred):
return self.loss(y_true, y_pred, name='HDE_metric')
def debug(self, y_true, y_pred):
return tf.map_fn(lambda x: self._erosion_distance_single(x[0], x[1]), (y_true, y_pred),
dtype=tf.float32, name='HDE_loss_map_fn')
# class HausdorffDiatanceConvolution:
# def __init__(self, ndim=3, im_shape: tuple = (64, 64, 64, 1), max_kernel_size=9, step_kernel_size=3, alpha=2):
# """
# Approximation of the Hausdorff distance based on erosion operations based on the work done by Karimi D., et al.
# Karimi D., et al., "Reducing the Hausdorff Distance in Medical Image Segmentation with Convolutional Neural
# Networks". IEEE Transactions on Medical Imaging, 39, 2020. DOI 10.1109/TMI.2019.2930068
#
# :param ndim: Dimensionality of the images
# :param nerosion: Number of erosion steps. Defaults to 10.
# :param alpha: Parameter to penalize large segmentations. Defaults to 2
# """
# assert len(im_shape) == ndim + 1, "im_shape does not match with ndim. Missing channel dimension?"
# self.ndims = ndim
# axes = np.arange(0, self.ndims).tolist()
# self.before_erosion_transp = [axes[-1], *axes[:-1]] # [H, W, ..., C] -> [C, H, W, ...]
# self.after_erosion_transp = [*axes[1:], axes[0]] # [C, H, W, ...] -> [H, W, ..., C]
# self.conv = getattr(tf.nn, 'conv%dd' % self.ndims)
# self.sum_range = tf.range(0, self.ndims)
#
# self.im_shape = im_shape
# self.im_vol = np.prod(im_shape[:-1])
# kernel = generate_binary_structure(self.ndims, 1).astype(int)
# self.kernel = tf.constant(kernel / np.sum(kernel), tf.float32)
# self.kernel = tf.expand_dims(tf.expand_dims(self.kernel, -1), -1) # [H, W, D, C_in, C_out]
# self.kernel = tf.tile(self.kernel, [*[1]*self.ndims, self.im_shape[-1], self.im_shape[-1]])
# self.alpha = int(alpha)
# self.radii = np.arange(1, max_kernel_size, step=step_kernel_size)
# self.radii_alpha = [np.pow(r, alpha).astype(float) for r in self.radii]
#
# def soft_diff(self, p, q):
# return tf.multiply(tf.pow(p - q, 2.), q)
#
# def body(self, y_true, y_pred):
#
"""
class HausdorffDistanceErosion_2:
def __init__(self, im_shape, num_erosions, num_dimensions=3, alpha=2., loop_max_iterations=20):
self.alpha = alpha
self.ndims = num_dimensions
self.conv = getattr(tf.nn, 'conv%dd' % self.ndims)
self.iterator = tf.constant(num_erosions, name='num_erosions')
self.norm = 1 / np.prod(im_shape)
self.erosion_kernel = generate_binary_structure(self.ndims, 1).astype(float)
self.erosion_kernel /= np.sum(self.erosion_kernel)
self.erosion_kernel = tf.constant( self.erosion_kernel, tf.float32)
self.loop_max_iterations = loop_max_iterations
def erosion_sum(self, p, q, k):
er_tensor = p - q
er_tensor = tf.pow(er_tensor, 2.)
def erode(in_tensor):
# Erosion of in_tensor = Dilation of (1 - in_tensor)
return self.conv(tf.expand_dims(1. - in_tensor, 0), self.erosion_kernel, [1] * (self.ndims + 2), 'SAME')
def while_loop_body(i, in_tensor):
in_tensor = erode(in_tensor)
i -= 1
return i, in_tensor
def while_loop_condition(i, in_tensor):
return tf.less_equal(i, 1), in_tensor
er_iterator = tf.constant(k)
_, er_tensor = tf.while_loop(while_loop_condition, while_loop_body, loop_vars=[er_iterator, er_tensor],
maximum_iterations=self.loop_max_iterations)
er_tensor *= tf.pow(k, self.alpha)
return tf.reduce_sum(er_tensor)
def loss(self, y_true, y_pred):
hd_distance = tf.constant(0, name='hausdroff_distance')
def while_loop_body(i, p, q, ret):
i -= 1
return i, p, q, ret + self.erosion_sum(p, q, i)
_, _, _, hd_distance = tf.while_loop(lambda i, p, q, ret: tf.less_equal(i, 1),
while_loop_body,
loop_vars=[self.iterator, y_pred, y_true, hd_distance])
hd_distance /= self.norm
return hd_distance
"""
class WeightedHausdorffDistance:
def __init__(self, input_shape, alpha=-1, threshold=0.5):
"""
WARNING: Requires a insane amount of memory
:param input_shape: [H, W, D, C] or [H, W, C]
:param alpha: Parameter of the generalized mean. Ideally -inf, but then the function becomes less smooth.
:param threshold: Threshold of segmentations, used in tf.where function
"""
warnings.warn("This function requires an insane amount of memory")
self.input_shape = input_shape
self.dim = len(input_shape[:-1])
self.ohe_segm = bool(input_shape[-1] > 1) # One-Hot Encoded segmentations on the channel axis
aux = np.arange(len(self.input_shape)).tolist()
self.ohe_transpose = [aux[-1], *aux[:-1]]
self.alpha = alpha
self.threshold = threshold
list_coords = [np.arange(c) for c in self.input_shape[:-1]]
self.img_loc = tf.convert_to_tensor(cartesian(list_coords), dtype=tf.float32)
self.max_dist = np.sqrt(np.sum(np.square(self.input_shape[:-1]))) # Largest diagonal
def pairwise_distance(self, A, B):
sq_norm_a = tf.reduce_sum(tf.square(A), 1)
sq_norm_b = tf.reduce_sum(tf.square(B), 1)
sq_norm_a = tf.reshape(sq_norm_a, [-1, 1])
sq_norm_b = tf.reshape(sq_norm_b, [1, -1])
return tf.sqrt(tf.maximum(sq_norm_a - 2 * tf.matmul(A, B, transpose_a=False, transpose_b=True) + sq_norm_b, 0.))
def hausdorff(self, y_true, y_pred):
if self.ohe_segm:
y_true = tf.transpose(y_true, self.ohe_transpose)
y_pred = tf.transpose(y_pred, self.ohe_transpose)
hausdorff_per_ch = tf.map_fn(lambda x: self.hausdorff_per_channel(x[0], x[1]), (y_true, y_pred), tf.float32)
return tf.reduce_mean(hausdorff_per_ch)
else:
return self.hausdorff_per_channel(y_true, y_pred)
def hausdorff_per_channel(self, y_true, y_pred):
Y = tf.cast(tf.where(y_true > self.threshold), dtype=tf.float32)
p = K.flatten(y_pred) # Flatten the predicted segmentation (activation map 'p' in d_WH)
size_Y = tf.shape(Y)[0]
S = tf.reduce_sum(p)
p = tf.squeeze(K.repeat(tf.expand_dims(p, -1), size_Y))
dist_mat = self.pairwise_distance(self.img_loc, Y)
term_1 = tf.reduce_sum(p * tf.minimum(dist_mat, 1)) / (S + EPS_tf)
term_2 = tf.minimum((dist_mat + EPS_tf) / (tf.pow(p, self.alpha) + (EPS_tf / self.max_dist)), 0.)
term_2 = tf.clip_by_value(term_2, 0., self.max_dist)
term_2 = tf.reduce_mean(term_2, axis=0)
return term_1 + term_2
@function_decorator('Weighted_Hausdorff__loss')
def loss(self, y_true, y_pred):
batch_hdist = tf.map_fn(lambda x: self.hausdorff(x[0], x[1]), (y_true, y_pred), dtype=tf.float32)
return tf.reduce_mean(batch_hdist)
@function_decorator('Weighted_Hausdorff__metric')
def metric(self, y_true, y_pred):
return self.loss(y_true, y_pred)
class NCC:
def __init__(self, in_shape, eps=EPS_tf):
self.__shape_size = tf.cast(tf.reduce_prod(in_shape), tf.float32)
self.__eps = eps
def ncc(self, y_true, y_pred):
f_yt = tf.reshape(y_true, [-1])
f_yp = tf.reshape(y_pred, [-1])
mean_yt = tf.reduce_mean(f_yt)
mean_yp = tf.reduce_mean(f_yp)
n_f_yt = f_yt - mean_yt
n_f_yp = f_yp - mean_yp
norm_yt = tf.norm(f_yt, ord='euclidean')
norm_yp = tf.norm(f_yp, ord='euclidean')
numerator = tf.reduce_sum(tf.multiply(n_f_yt, n_f_yp))
denominator = norm_yt * norm_yp + self.__eps
return tf.math.divide_no_nan(numerator, denominator)
@function_decorator('NCC__loss')
def loss(self, y_true, y_pred):
# According to the documentation, the loss returns a scalar
# Ref: https://www.tensorflow.org/api_docs/python/tf/keras/Model#compile
return tf.reduce_mean(tf.map_fn(lambda x: 1 - self.ncc(x[0], x[1]), (y_true, y_pred), tf.float32))
@function_decorator('NCC__metric')
def metric(self, y_true, y_pred):
return tf.reduce_mean(tf.map_fn(lambda x: self.ncc(x[0], x[1]), (y_true, y_pred), tf.float32))
def ncc(y_true, y_pred):
y_true = K.flatten(K.cast(y_true, 'float32'))
y_pred = K.flatten(K.cast(y_pred, 'float32'))
mean_true = K.mean(y_true)
mean_pred = K.mean(y_pred)
std_true = K.std(y_true)
std_pred = K.std(y_pred)
num = K.mean((y_true - mean_true) * (y_pred - mean_pred))
den = std_true * std_pred + EPS_tf
batch_ncc = num / den
return K.mean(batch_ncc)
class StructuralSimilarity:
# Based on https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/losses/dssim.py
def __init__(self, k1=0.01, k2=0.03,
patch_size=32, dynamic_range=1., overlap=0.0, dim=3,
alpha=1., beta=1., gamma=1.,
**kwargs):
"""
Structural (Di)Similarity Index Measure:
:param k1: Internal parameter. Defaults to 0.01
:param k2: Internal parameter. Defaults to 0.02
:param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
:param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
:param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
:param dim: Data dimensionality. Must be {1, 2, 3}. Defaults to 3.
:param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
structure measures. Default to 1.
"""
assert (dim > 0) and (dim < 4), 'Invalid dimension. It must be 1, 2, or 3'
assert overlap < 1., 'Invalid overlap. It must be in the range [0., 1.)'
self.c1 = (k1 * dynamic_range) ** 2
self.c2 = (k2 * dynamic_range) ** 2
self.c3 = self.c2 / 2
self.alpha = tf.cast(alpha, tf.float32)
self.beta = tf.cast(beta, tf.float32)
self.gamma = tf.cast(gamma, tf.float32)
self.kernel_shape = [1] + [patch_size] * dim + [1]
stride = int(patch_size * (1 - overlap))
self.stride = [1] + [stride if stride else 1] * dim + [1]
self.dim = dim
self.patch_extractor = None
self.reduce_axis = list()
if dim == 2:
self.patch_extractor = tf.extract_image_patches
self.reduce_axis = [1, 2]
elif dim == 3:
self.patch_extractor = tf.extract_volume_patches
self.reduce_axis = [1, 2, 3]
else:
raise ValueError('Invalid dimension value. Expected 2 or 3')
if patch_size == -1:
# Don't extract patches
self.dim = 1
self.L = None # Luminance
self.C = None # Contrast
self.S = None # Structure
def __int_shape(self, x):
return tf.keras.backend.int_shape(x) if tf.keras.backend.backend() == 'tensorflow' else tf.keras.backend.shape(x)
def ssim(self, y_true, y_pred):
if self.dim > 1:
# Don't use for training. The gradient doesn't backpropagate through the patch extractors
# patches: [B, out_rows, out_cols, ..., krows*kcols*...*channels] -> out_rows * out_cols * ... = nb patches
patches_true = self.patch_extractor(y_true, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_true')
patches_pred = self.patch_extractor(y_pred, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_pred')
else:
patches_true = y_true
patches_pred = y_pred
#bs, w, h, d, *c = self.__int_shape(patches_pred)
#patches_true = tf.reshape(patches_true, [-1, w, h, d, tf.reduce_prod(c)])
#patches_pred = tf.reshape(patches_pred, [-1, w, h, d, tf.reduce_prod(c)])
# Mean
u_true = tf.reduce_mean(patches_true, axis=-1)
u_pred = tf.reduce_mean(patches_pred, axis=-1)
# Variance
v_true = tf.math.reduce_variance(patches_true, axis=-1)
v_pred = tf.math.reduce_variance(patches_pred, axis=-1)
# Standard dev.
s_true = tf.sqrt(v_true)
s_pred = tf.sqrt(v_pred)
# Covariance
covar = tf.reduce_mean(patches_true * patches_pred, axis=-1) - u_true * u_pred
# SSIM
self.L = (2 * u_true * u_pred + self.c1) / (tf.square(u_true) + tf.square(u_pred) + self.c1)
self.C = (2 * s_true * s_pred + self.c2) / (v_true + v_pred + self.c2)
self.S = (covar + self.c3) / (s_true * s_pred + self.c3)
self.L = tf.reduce_mean(self.L, axis=self.reduce_axis)
self.C = tf.reduce_mean(self.C, axis=self.reduce_axis)
self.S = tf.reduce_mean(self.S, axis=self.reduce_axis)
return tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)
@function_decorator('SSIM__loss')
def loss(self, y_true, y_pred):
return tf.reduce_mean((1. - self.ssim(y_true, y_pred)) / 2.0)
@function_decorator('SSIM__metric')
def metric(self, y_true, y_pred):
return tf.reduce_mean(self.ssim(y_true, y_pred))
class StructuralSimilarity_simplified:
# Based on https://github.com/keras-team/keras-contrib/blob/master/keras_contrib/losses/dssim.py
def __init__(self, k1=0.01, k2=0.03,
patch_size=32, dynamic_range=1., overlap=0.0, dim=3,
alpha=1., beta=1., gamma=1.,
**kwargs):
"""
Structural (Di)Similarity Index Measure:
:param k1: Internal parameter. Defaults to 0.01
:param k2: Internal parameter. Defaults to 0.02
:param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
:param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
:param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
:param dim: Data dimensionality. Must be {1, 2, 3}. Defaults to 3.
:param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
structure measures. Default to 1.
"""
assert (dim > 0) and (dim < 4), 'Invalid dimension. It must be 1, 2, or 3'
assert overlap < 1., 'Invalid overlap. It must be in the range [0., 1.)'
self.c1 = (k1 * dynamic_range) ** 2
self.c2 = (k2 * dynamic_range) ** 2
self.c3 = self.c2 / 2
self.alpha = tf.cast(alpha, tf.float32)
self.beta = tf.cast(beta, tf.float32)
self.gamma = tf.cast(gamma, tf.float32)
self.kernel_shape = [1] + [patch_size] * dim + [1]
stride = int(patch_size * (1 - overlap))
self.stride = [1] + [stride if stride else 1] * dim + [1]
self.dim = dim
self.patch_extractor = None
if dim == 2:
self.patch_extractor = tf.extract_image_patches
elif dim == 3:
self.patch_extractor = tf.extract_volume_patches
if patch_size == -1:
# Don't extract patches
self.dim = 1
self.L = None # Luminance
self.C = None # Contrast
self.S = None # Structure
def __int_shape(self, x):
return tf.keras.backend.int_shape(x) if tf.keras.backend.backend() == 'tensorflow' else tf.keras.backend.shape(x)
def ssim(self, y_true, y_pred):
if self.dim > 1:
# Don't use for training. The gradient doesn't backpropagate through the patch extractors
# patches: [B, out_rows, out_cols, ..., krows*kcols*...*channels] -> out_rows * out_cols * ... = nb patches
patches_true = self.patch_extractor(y_true, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_true')
patches_pred = self.patch_extractor(y_pred, ksizes=self.kernel_shape, strides=self.stride, padding='VALID', name='patches_pred')
else:
patches_true = y_true
patches_pred = y_pred
#bs, w, h, d, *c = self.__int_shape(patches_pred)
#patches_true = tf.reshape(patches_true, [-1, w, h, d, tf.reduce_prod(c)])
#patches_pred = tf.reshape(patches_pred, [-1, w, h, d, tf.reduce_prod(c)])
# Mean
u_true = tf.reduce_mean(patches_true, axis=-1)
u_pred = tf.reduce_mean(patches_pred, axis=-1)
# Variance
v_true = tf.math.reduce_variance(patches_true, axis=-1)
v_pred = tf.math.reduce_variance(patches_pred, axis=-1)
# Covariance
covar = tf.reduce_mean(patches_true * patches_pred, axis=-1) - u_true * u_pred
# return tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)
num = (2 * u_true * u_pred + self.c1) * (2 * covar + self.c2)
den = ((tf.square(u_true) + tf.square(u_pred) + self.c1) * (v_pred + v_true + self.c2))
return num / den
@function_decorator('SSIM_simple__loss')
def loss(self, y_true, y_pred):
return tf.reduce_mean((1. - self.ssim(y_true, y_pred)) / 2.0)
@function_decorator('SSIM_simple__metric')
def metric(self, y_true, y_pred):
return tf.reduce_mean(self.ssim(y_true, y_pred))
class MultiScaleStructuralSimilarity(StructuralSimilarity):
def __init__(self, k1=0.01, k2=0.03, patch_size=3, dynamic_range=1., overlap=0.0, dim=3, nscales=3, alpha=1., beta=1., gamma=1.):
"""
Multi Scale Structural (Di)Similarity Index Measure:
Ref: [1] https://www.cns.nyu.edu/pub/eero/wang03b.pdf
:param k1: Internal parameter. Defaults to 0.01
:param k2: Internal parameter. Defaults to 0.02
:param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
:param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
:param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
:param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
:param nscales: Number of scales to analyze. Defaults to 3.
:param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
structure measures. Default to 1.
"""
assert dim > 1, 'Cannot be used with 1-D data'
super(MultiScaleStructuralSimilarity, self).__init__(k1=k1, k2=k2, patch_size=patch_size,
dynamic_range=dynamic_range, overlap=overlap, dim=dim,
alpha=alpha, beta=beta, gamma=gamma)
self.num_scales = nscales
self.avg_pool = getattr(tf.nn, 'avg_pool%dd' % dim)
self.ds_stride = self.ds_kernel = [1] + [2]*dim + [1]
# In [1] these are set to the same value at the same scales and normalized across scales
self.alpha = self.beta = self.gamma = 1 / nscales
def _cond(self, cs_prod, scale_level, y_true, y_pred):
return tf.less_equal(scale_level, self.num_scales)
def _iteration(self, cs_prod, scale_level, y_true, y_pred):
super(MultiScaleStructuralSimilarity, self).ssim(y_true, y_pred)
cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma))
y_true = self.avg_pool(y_true, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
y_pred = self.avg_pool(y_pred, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
scale_level += 1
return cs_prod, scale_level, y_true, y_pred,
def ssim(self, y_true, y_pred):
return self.ms_ssim(y_true, y_pred)
def ms_ssim(self, y_true, y_pred):
cs_prod = tf.constant(1.)
scale_level = tf.constant(1.)
cs_prod, *_ = tf.while_loop(self._cond,
self._iteration,
(cs_prod, scale_level, y_true, y_pred),
(cs_prod.get_shape(), scale_level.get_shape(),
tf.TensorShape(([1] + [None] * self.dim + [1])),
tf.TensorShape(([1] + [None] * self.dim + [1]))))
ms_ssim = tf.reduce_mean(tf.pow(self.L, self.alpha)) * cs_prod
return tf.reduce_mean(ms_ssim)
@function_decorator('MS_SSIM__loss')
def loss(self, y_true, y_pred):
return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred)) / 2.0)
class MultiScaleStructuralSimilarity_v2(StructuralSimilarity):
def __init__(self, k1=0.01, k2=0.03, patch_size=3, dynamic_range=1., overlap=0.0, dim=3, nscales=3, alpha=1., beta=1., gamma=1.):
"""
Multi Scale Structural (Di)Similarity Index Measure:
Ref: [1] https://www.cns.nyu.edu/pub/eero/wang03b.pdf
:param k1: Internal parameter. Defaults to 0.01
:param k2: Internal parameter. Defaults to 0.02
:param patch_size: Size of the extracted patches. Defaults to 32. Recommendation: half the image size.
:param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
:param overlap: Patch overlap ratio. Must be in the range [0., 1.). Defaults to 0.
:param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
:param nscales: Number of scales to analyze. Defaults to 3.
:param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
structure measures. Default to 1.
"""
assert dim > 1, 'Cannot be used with 1-D data'
super(MultiScaleStructuralSimilarity_v2, self).__init__(k1=k1, k2=k2, patch_size=patch_size,
dynamic_range=dynamic_range, overlap=overlap, dim=dim,
alpha=alpha, beta=beta, gamma=gamma)
self.num_scales = nscales
self.avg_pool = getattr(tf.nn, 'avg_pool%dd' % dim)
self.ds_stride = self.ds_kernel = [1] + [2]*dim + [1]
# In [1] these are set to the same value at the same scales and normalized across scales
self.alpha = self.beta = self.gamma = 1 / nscales
def _cond(self, cs_prod, scale_level, y_true, y_pred):
return tf.less_equal(scale_level, self.num_scales)
def _iteration(self, cs_prod, scale_level, y_true, y_pred):
super(MultiScaleStructuralSimilarity_v2, self).ssim(y_true, y_pred)
cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma))
y_true = self.avg_pool(y_true, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
y_pred = self.avg_pool(y_pred, ksize=self.ds_kernel, strides=self.ds_stride, padding='VALID')
scale_level += 1
return cs_prod, scale_level, y_true, y_pred,
def ssim(self, y_true, y_pred):
return self.ms_ssim(y_true, y_pred)
def ms_ssim(self, y_true, y_pred):
cs_prod = tf.constant(1.)
scale_level = tf.constant(1.)
cs_prod, *_ = tf.while_loop(self._cond,
self._iteration,
(cs_prod, scale_level, y_true, y_pred),
(cs_prod.get_shape(), scale_level.get_shape(),
tf.TensorShape(([1] + [None] * self.dim + [1])),
tf.TensorShape(([1] + [None] * self.dim + [1]))))
ms_ssim = tf.reduce_mean(tf.pow(self.L, self.alpha)) * cs_prod
return tf.reduce_mean(ms_ssim)
@function_decorator('MS_SSIM_v2__loss')
def loss(self, y_true, y_pred):
return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred)) / 2.0)
class StructuralSimilarityGaussian:
# This is equivalent to StructuralSimilarity(patch_size=img_size)
def __init__(self, k1=0.01, k2=0.03, dynamic_range=1., gauss_sigma=5., dim=3, alpha=1., beta=1., gamma=1.):
"""
SSIM using Gaussian filter to approximate the statistics of the images
Ref: https://www.cns.nyu.edu/pub/eero/wang03b.pdf
https://arxiv.org/pdf/1511.08861.pdf
https://github.com/NVlabs/PL4NN/blob/master/src/loss.py
:param k1: Internal parameter. Defaults to 0.01
:param k2: Internal parameter. Defaults to 0.02
:param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
:param gauss_sigma: Sigma of the Gaussian filter. Defaults to 1.5.
:param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
:param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
structure measures. Default to 1.
"""
self.c1 = (k1 * dynamic_range) ** 2
self.c2 = (k2 * dynamic_range) ** 2
self.c3 = self.c2 / 2
self.alpha = tf.cast(alpha, tf.float32)
self.beta = tf.cast(beta, tf.float32)
self.gamma = tf.cast(gamma, tf.float32)
self.dim = dim
self.convDN = getattr(tf.nn, 'conv%dd' % dim)
self.sigma = gauss_sigma
def build_gaussian_filter(self, size, sigma, num_channels=1):
range_1d = tf.range(-(size/2) + 1, size//2 + 1)
g_1d = tf.math.exp(-1.0 * tf.pow(range_1d, 2) / (2. * tf.pow(sigma, 2)))
g_1d_expanded = tf.expand_dims(g_1d, -1)
iterator = tf.constant(1)
self.__GF = tf.while_loop(lambda iterator, g_1d: tf.less(iterator, self.dim),
lambda iterator, g_1d: (iterator + 1, tf.expand_dims(g_1d, -1) * tf.transpose(g_1d_expanded)),
[iterator, g_1d],
[iterator.get_shape(), tf.TensorShape([None]*self.dim)], # Shape invariants
back_prop=False,
)[-1]
self.__GF = tf.divide(self.__GF, tf.reduce_sum(self.__GF)) # Normalization
self.__GF = tf.reshape(self.__GF, (*[size]*self.dim, 1, 1)) # Add Ch_in and Ch_out for convolution
self.__GF = tf.tile(self.__GF, (*[1] * self.dim, num_channels, num_channels,))
def format_data(self, in_data):
ret_val = in_data
if self.dim == 3:
ret_val = tf.transpose(ret_val, [0, 3, 1, 2, 4])
return ret_val
def ssim(self, y_true, y_pred):
self.build_gaussian_filter(y_pred.shape[1], self.sigma)
y_true_tr = self.format_data(y_true)
y_pred_tr = self.format_data(y_pred)
u_true = self.convDN(y_true_tr, self.__GF, [1] * (self.dim + 2), 'SAME')
u_pred = self.convDN(y_pred_tr, self.__GF, [1] * (self.dim + 2), 'SAME')
v_true = self.convDN(tf.pow(y_true_tr, 2), self.__GF, [1] * (self.dim + 2), 'SAME') - tf.pow(u_true, 2)
v_pred = self.convDN(tf.pow(y_pred_tr, 2), self.__GF, [1] * (self.dim + 2), 'SAME') - tf.pow(u_pred, 2)
covar = self.convDN(tf.multiply(y_true_tr, y_pred_tr), self.__GF, [1] * (self.dim + 2), 'SAME') - u_true * u_pred
self.L = (2 * u_true * u_pred + self.c1) / (tf.square(u_true) + tf.square(u_pred) + self.c1)
self.C = (2 * tf.sqrt(v_true) * tf.sqrt(v_pred) + self.c2) / (v_true + v_pred + self.c2)
self.S = (covar + self.c3) / (tf.sqrt(v_true) * tf.sqrt(v_pred) + self.c3)
ssim = tf.pow(self.L, self.alpha) * tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma)
return tf.reduce_mean(ssim)
@function_decorator('SSIM_Gaus__loss')
def loss(self, y_true, y_pred):
return tf.reduce_mean((1. - self.ssim(y_true, y_pred))/2.)
@function_decorator('SSIM_Gaus__metric')
def metric(self, y_true, y_pred):
return tf.reduce_mean(self.ssim(y_true, y_pred))
class MultiScaleStructuralSimilarityGaussian(StructuralSimilarityGaussian):
def __init__(self, k1=0.01, k2=0.03, dynamic_range=1., gauss_sigma=5., dim=3, nscales=3, alpha=1., beta=1., gamma=1.):
"""
Multi Scale SSIM inheriting from StructuralSimilarityGaussian classed
Ref: https://www.cns.nyu.edu/pub/eero/wang03b.pdf
https://arxiv.org/pdf/1511.08861.pdf
https://github.com/NVlabs/PL4NN/blob/master/src/loss.py
:param k1: Internal parameter. Defaults to 0.01
:param k2: Internal parameter. Defaults to 0.02
:param dynamic_range: Maximum numerical intensity value (typ. 2^bits_per_pixel - 1). Defaults to 1.
:param gauss_sigma: Sigma of the Gaussian filter. Defaults to 1.5.
:param dim: Data dimensionality. Must be {2, 3}. Defaults to 3.
:param nscales: Number of scales to analyze. Defaults to 3.
:param alpha, beta, gamma: Exponential parameters to balance the contribution of the luminance, contrast and
structure measures. Default to 1.
"""
super(MultiScaleStructuralSimilarityGaussian, self).__init__(k1=k1, k2=k2, dynamic_range=dynamic_range,
gauss_sigma=gauss_sigma, dim=dim,
alpha=alpha, beta=beta, gamma=gamma)
self.__num_scales = nscales
# # If using the Gaussian approximation of the pyramid MS approach described in https://arxiv.org/pdf/1511.08861.pdf
# def build_sigma_scales(self):
# iterator = tf.constant(0)
# scales = tf.expand_dims(self.sigma, -1)
# last_sigma = scales
# self.sigma_scales = tf.while_loop(lambda iterator, last_sigma, scales: tf.less_equal(iterator, self.__num_scales),
# lambda iterator, last_sigma, scales: (iterator + 1, tf.concat([scales, last_sigma/2], 0), last_sigma/2),
# [iterator, last_sigma, scales])[-1]
#
# def build_gaussian_filters_scales(self, size):
# self.__GFS = tf.map_fn(lambda sigma: self.build_gaussian_filter(size, sigma), self.sigma, tf.float32)
def _iteration(self, cs_prod, scale_level, y_true, y_pred):
# Compute the SSIM, so CS and L have the correct value
self.ssim(y_true, y_pred)
cs_prod *= tf.reduce_mean(tf.pow(self.C, self.beta) * tf.pow(self.S, self.gamma))
scale_level += 1
# Downsample the images to half the resolution for the next iteration
y_true = tf.nn.avg_pool(y_true, [1] + [2]*self.dim + [1], [1] + [2]*self.dim + [1], 'SAME')
y_pred = tf.nn.avg_pool(y_true, [1] + [2]*self.dim + [1], [1] + [2]*self.dim + [1], 'SAME')
return cs_prod, scale_level, y_true, y_pred
def ms_ssim(self, y_true, y_pred):
scale_level = tf.constant(0.)
cs_prod = tf.constant(1.)
cs_prod, *_ = tf.while_loop(tf.less(scale_level, self.__num_scales),
self._iteration,
(cs_prod, scale_level, y_true, y_pred),
(cs_prod.get_shape(), scale_level.get_shape(),
tf.TensorShape(([1] + [None]*self.dim + [1])),
tf.TensorShape(([1] + [None]*self.dim + [1]))))
# L is taken from the last scale
return tf.reduce_mean(tf.pow(self.L, self.alfa)) * cs_prod
@function_decorator('MS_SSIM_Gaus__metric')
def loss(self, y_true, y_pred):
return tf.reduce_mean((1. - self.ms_ssim(y_true, y_pred))/2.)
class DICEScore:
def __init__(self, input_shape: list):
"""
DICE Score.
:param input_shape: Shape of the input image, without the batch dimension, e.g., 2D: [H, W, C], 3D: [H, W, D, C]
"""
self.axes = list(range(1, len(input_shape))) # The list will not include the channel axis [1, ..., num_dims)
def dice(self, y_true, y_pred):
numerator = 2 * tf.reduce_sum(y_true * y_pred, self.axes)
denominator = tf.reduce_sum(y_true + y_pred, self.axes)
return tf.reduce_mean(tf.div_no_nan(numerator, denominator))
@function_decorator('DICE__loss')
def loss(self, y_true, y_pred):
return 1 - 2 * tf.reduce_mean(self.dice(y_true, y_pred))
@function_decorator('DICE__metric')
def metric(self, y_true, y_pred):
return tf.reduce_mean(self.dice(y_true, y_pred))
class GeneralizedDICEScore:
def __init__(self, input_shape: list, num_labels: int=None):
"""
Generalized DICE Score. Implementation based on Carole H. Sudre, et al., "Generalised DIce Overlap as a Deep
Learning Los Function for Highly Unbalanced Segmentations" https://arxiv.org/abs/1707.03237
:param input_shape: Shape of the input image, without the batch dimension, e.g., 2D: [H, W, C], 3D: [H, W, D, C]
"""
self.smooth = 1e-10 # If y_pred = y_true = null -> dice should be 1
self.num_labels = num_labels
if input_shape[-1] > 1:
try:
self.flat_shape = [-1, np.prod(np.asarray(input_shape[:-1])), input_shape[-1]]
except TypeError as err:
self.flat_shape = [-1, None, input_shape[-1]]
self.cardinal_encoded = False
elif num_labels is not None:
try:
self.flat_shape = [-1, np.prod(np.asarray(input_shape[:-1])), input_shape[-1]]
except TypeError as err:
self.flat_shape = [-1, None, input_shape[-1]]
self.cardinal_enc_shape = [-1, *input_shape[:-1]]
self.cardinal_encoded = True
warnings.warn('Differentiable cardinal encoding not yet implemented')
else:
raise ValueError('If input_shape does not correspond to cardinally encoded,'
'then num_labels must be provided')
def one_hot_encoding(self, in_img, name=''):
# TODO: Test if differentiable!
labels, indices = tf.unique(tf.reshape(in_img, [-1]), tf.int32, name=name+'_unique')
one_hot = tf.one_hot(indices, self.num_labels, name=name + '_one_hot')
one_hot = tf.reshape(one_hot, self.cardinal_enc_shape + [self.num_labels], name=name + '_reshape')
one_hot = tf.slice(one_hot, [0] * len(self.cardinal_enc_shape) + [1], [-1] * (len(self.cardinal_enc_shape) + 1),
name=name + '_remove_bg')
return one_hot
def weigthed_dice(self, y_true, y_pred):
# y_true = [B, -1, L]
# y_pred = [B, -1, L]
# if self.cardinal_encoded:
# y_true = self.one_hot_encoding(y_true, name='GDICE_one_hot_encoding_y_true')
# y_pred = self.one_hot_encoding(y_pred, name='GDICE_one_hot_encoding_y_pred')
y_true = tf.reshape(y_true, self.flat_shape, name='GDICE_reshape_y_true') # Flatten along the volume dimensions
y_pred = tf.reshape(y_pred, self.flat_shape, name='GDICE_reshape_y_pred') # Flatten along the volume dimensions
size_y_true = tf.reduce_sum(y_true, axis=1, name='GDICE_size_y_true')
size_y_pred = tf.reduce_sum(y_pred, axis=1, name='GDICE_size_y_pred')
w = tf.math.divide_no_nan(1., tf.pow(size_y_true, 2), name='GDICE_weight')
numerator = w * tf.reduce_sum(y_true * y_pred, axis=1)
denominator = w * (size_y_true + size_y_pred)
return tf.div_no_nan(2 * tf.reduce_sum(numerator, axis=-1) + self.smooth, tf.reduce_sum(denominator, axis=-1) + self.smooth)
def macro_dice(self, y_true, y_pred):
# y_true = [B, -1, L]
# y_pred = [B, -1, L]
# if self.cardinal_encoded:
# y_true = self.one_hot_encoding(y_true, name='GDICE_one_hot_encoding_y_true')
# y_pred = self.one_hot_encoding(y_pred, name='GDICE_one_hot_encoding_y_pred')
y_true = tf.reshape(y_true, self.flat_shape, name='GDICE_reshape_y_true') # Flatten along the volume dimensions
y_pred = tf.reshape(y_pred, self.flat_shape, name='GDICE_reshape_y_pred') # Flatten along the volume dimensions
size_y_true = tf.reduce_sum(y_true, axis=1, name='GDICE_size_y_true')
size_y_pred = tf.reduce_sum(y_pred, axis=1, name='GDICE_size_y_pred')
numerator = tf.reduce_sum(y_true * y_pred, axis=1)
denominator = (size_y_true + size_y_pred)
return tf.div_no_nan(2 * numerator + self.smooth, denominator + self.smooth)
@function_decorator('GeneralizeDICE__loss')
def loss(self, y_true, y_pred):
return 1 - tf.reduce_mean(self.weigthed_dice(y_true, y_pred))
@function_decorator('GeneralizeDICE__metric')
def metric(self, y_true, y_pred):
return tf.reduce_mean(self.weigthed_dice(y_true, y_pred))
@function_decorator('GeneralizeDICE__loss_macro')
def loss_macro(self, y_true, y_pred):
return 1 - tf.reduce_mean(self.macro_dice(y_true, y_pred))
@function_decorator('GeneralizeDICE__metric_macro')
def metric_macro(self, y_true, y_pred):
return tf.reduce_mean(self.macro_dice(y_true, y_pred))
def target_registration_error(y_true, y_pred, average=True):
'''
Target Registration Error measured as the average distance between y_true and y_pred
:param y_true: [N, D] target points
:param y_pred: [N, D] predicted points
:param average: return the average TRE or an [N,] array
:return: averate TRE or [N,] array of TRE for each point
'''
assert y_true.shape == y_pred.shape, "y_true and y_pred must have the same shape"
if average:
return tf.reduce_mean(tf.linalg.norm(y_pred - y_true, axis=1))
else:
return tf.linalg.norm(y_pred - y_true, axis=1)
# TODO: tensorflow-graphic has an implementation of Hausdorff ditance.
# However, this is not where it should and I can't find it
# def HausdorffDistance_exact(y_true, y_pred, ohe=False, name='hd_exact'):
# if ohe:
# y_true = tf.transpose(y_true, [0, 4, 1, 2, 3])
# y_pred = tf.transpose(y_pred, [0, 4, 1, 2, 3])
# y_true_coords = tf.where(y_true)
# y_pred_coords = tf.where(y_pred)
#
# return tfg_nn.loss.hausdorff_distance.evaluate(y_true_coords, y_pred_coords, name=name)
|