jpdefrutos's picture
added to flag to output the displacement map (takes long to resize back to the original resolution)
c292437
raw
history blame
11 kB
import os
import errno
import shutil
import numpy as np
from scipy.interpolate import griddata, Rbf, LinearNDInterpolator, NearestNDInterpolator
from skimage.measure import regionprops
from DeepDeformationMapRegistration.layers.b_splines import interpolate_spline
from DeepDeformationMapRegistration.utils.thin_plate_splines import ThinPlateSplines
from tensorflow import squeeze
from scipy.ndimage import zoom
import tensorflow as tf
def try_mkdir(dir, verbose=True):
try:
os.makedirs(dir)
except OSError as err:
if err.errno == errno.EEXIST and verbose:
print("Directory " + dir + " already exists")
else:
raise ValueError("Can't create dir " + dir)
else:
print("Created directory " + dir)
def function_decorator(new_name):
""""
Change the __name__ property of a function using new_name.
:param new_name:
:return:
"""
def decorator(func):
func.__name__ = new_name
return func
return decorator
class DatasetCopy:
def __init__(self, dataset_location, copy_location=None, verbose=True):
self.__copy_loc = os.path.join(os.getcwd(), 'temp_dataset') if copy_location is None else copy_location
self.__dst_loc = dataset_location
self.__verbose = verbose
def copy_dataset(self):
shutil.copytree(self.__dst_loc, self.__copy_loc)
if self.__verbose:
print('{} copied to {}'.format(self.__dst_loc, self.__copy_loc))
return self.__copy_loc
def delete_temp(self):
shutil.rmtree(self.__copy_loc)
if self.__verbose:
print('Deleted: ', self.__copy_loc)
class DisplacementMapInterpolator:
def __init__(self,
image_shape=[64, 64, 64],
method='rbf',
step=1):
assert method in ['rbf', 'griddata', 'tf', 'tps'], "Method must be 'rbf' or 'griddata'"
self.method = method
self.image_shape = image_shape
self.step = step # If to use every point or even N-th point
self.grid = self.__regular_grid()
def __regular_grid(self):
xx = np.linspace(0, self.image_shape[0], self.image_shape[0], endpoint=False, dtype=np.uint16)
yy = np.linspace(0, self.image_shape[1], self.image_shape[1], endpoint=False, dtype=np.uint16)
zz = np.linspace(0, self.image_shape[2], self.image_shape[2], endpoint=False, dtype=np.uint16)
xx, yy, zz = np.meshgrid(xx, yy, zz)
return np.stack([xx[::self.step, ::self.step, ::self.step].flatten(),
yy[::self.step, ::self.step, ::self.step].flatten(),
zz[::self.step, ::self.step, ::self.step].flatten()], axis=0).T
def __call__(self, disp_map, interp_points, backwards=False):
disp_map = disp_map.squeeze()[::self.step, ::self.step, ::self.step, ...].reshape([-1, 3])
grid_pts = self.grid.copy()
if backwards:
grid_pts = np.add(grid_pts, disp_map).astype(np.float32)
disp_map *= -1
if self.method == 'rbf':
interpolator = Rbf(grid_pts[:, 0], grid_pts[:, 1], grid_pts[:, 2], disp_map[:, :],
method='thin_plate', mode='N-D')
disp = interpolator(interp_points)
elif self.method == 'griddata':
linear_interp = LinearNDInterpolator(grid_pts, disp_map)
disp = linear_interp(interp_points).copy()
del linear_interp
if np.any(np.isnan(disp)):
# It might happen (though it shouldn't) that the interpolation point is outside the convex hull of grid points.
# in this situation, linear interpolation fails and will put NaN. Nearest can give a value, so we are going to
# substitute those unexpected NaNs with the nearest value. Unexpected == not in interp_points
nan_disp_idx = set(np.unique(np.argwhere(np.isnan(disp))[:, 0]))
nan_interp_pts_idx = set(np.unique(np.argwhere(np.isnan(interp_points))[:, 0]))
idx = nan_disp_idx - nan_interp_pts_idx if len(nan_disp_idx) > len(nan_interp_pts_idx) else nan_interp_pts_idx - nan_disp_idx
idx = list(idx)
if len(idx):
# We have unexpected NaNs
near_interp = NearestNDInterpolator(grid_pts, disp_map)
near_disp = near_interp(interp_points[idx, ...]).copy()
del near_interp
for n, i in enumerate(idx):
disp[i, ...] = near_disp[n, ...]
elif self.method == 'tf':
# Order: 1 -> linear, 2 -> thin plate, 3 -> cubic
disp = squeeze(interpolate_spline(grid_pts[np.newaxis, ...][::4, :], # Batch axis
disp_map[np.newaxis, ...][::4, :],
interp_points[np.newaxis, ...], order=2), axis=0)
else:
tps_interp = ThinPlateSplines(grid_pts[::8, :], self.grid.copy().astype(np.float32)[::8, :])
disp = tps_interp.interpolate(interp_points).eval()
del tps_interp
return disp
def get_segmentations_centroids(segmentations, ohe=True, expected_lbls=range(1, 28), missing_centroid=[np.nan]*3, brain_study=True):
segmentations = np.squeeze(segmentations)
if ohe:
segmentations = segmentation_ohe_to_cardinal(segmentations)
lbls = set(np.unique(segmentations)) - {0} # Remove the 0 value returned by np.unique, no label
# missing_lbls = set(expected_lbls) - lbls
# if brain_study:
# segmentations += np.ones_like(segmentations) # Regionsprops neglect the label 0. But we need it, so offset all labels by 1
else:
lbls = set(np.unique(segmentations)) if 0 in expected_lbls else set(np.unique(segmentations)) - {0}
missing_lbls = set(expected_lbls) - lbls
if 0 in expected_lbls:
segmentations += np.ones_like(segmentations) # Regionsprops neglects the label 0. But we need it, so offset all labels by 1
segmentations = np.squeeze(segmentations) # remove channel dimension, not needed anyway
seg_props = regionprops(segmentations)
centroids = np.asarray([c.centroid for c in seg_props]).astype(np.float32)
for lbl in missing_lbls:
idx = expected_lbls.index(lbl)
centroids = np.insert(centroids, idx, missing_centroid, axis=0)
return centroids.copy(), missing_lbls
def segmentation_ohe_to_cardinal(segmentation):
cpy = segmentation.copy()
for lbl in range(segmentation.shape[-1]):
cpy[..., lbl] *= (lbl + 1)
# Add the Background
cpy = np.concatenate([np.zeros(segmentation.shape[:-1])[..., np.newaxis], cpy], axis=-1)
return np.argmax(cpy, axis=-1)[..., np.newaxis]
def segmentation_cardinal_to_ohe(segmentation, labels_list: list = None):
# Keep in mind that we don't handle the overlap between the segmentations!
#labels_list = np.unique(segmentation)[1:] if labels_list is None else labels_list
num_labels = len(labels_list)
expected_shape = segmentation.shape[:-1] + (num_labels,)
cpy = np.zeros(expected_shape, dtype=np.uint8)
seg_squeezed = np.squeeze(segmentation, axis=-1)
for ch, lbl in enumerate(labels_list):
cpy[seg_squeezed == lbl, ch] = 1
return cpy
def resize_displacement_map(displacement_map: np.ndarray, dest_shape: [list, np.ndarray, tuple], scale_trf: np.ndarray = None, resolution_factors: [tuple, np.ndarray] = np.ones((3,))):
if scale_trf is None:
scale_trf = scale_transformation(displacement_map.shape, dest_shape)
else:
assert isinstance(scale_trf, np.ndarray) and scale_trf.shape == (4, 4), 'Invalid transformation: {}'.format(scale_trf)
zoom_factors = scale_trf.diagonal()
# First scale the values, so we cut down the number of multiplications
dm_resized = np.copy(displacement_map)
# Then rescale using zoom
dm_resized = zoom(dm_resized, zoom_factors)
dm_resized *= np.asarray(resolution_factors)
# dm_resized[..., 0] *= resolution_factors[0]
# dm_resized[..., 1] *= resolution_factors[1]
# dm_resized[..., 2] *= resolution_factors[2]
return dm_resized
def scale_transformation(original_shape: [list, tuple, np.ndarray], dest_shape: [list, tuple, np.ndarray]) -> np.ndarray:
if isinstance(original_shape, (list, tuple)):
original_shape = np.asarray(original_shape, dtype=int)
if isinstance(dest_shape, (list, tuple)):
dest_shape = np.asarray(dest_shape, dtype=int)
original_shape = original_shape.astype(int)
dest_shape = dest_shape.astype(int)
trf = np.eye(4)
np.fill_diagonal(trf, [*np.divide(dest_shape, original_shape), 1])
return trf
class GaussianFilter:
def __init__(self, size, sigma, dim, num_channels, stride=None, batch: bool=True):
"""
Gaussian filter
:param size: Kernel size
:param sigma: Sigma of the Gaussian filter.
:param dim: Data dimensionality. Must be {2, 3}.
:param num_channels: Number of channels of the image to filter.
"""
self.size = size
self.dim = dim
self.sigma = float(sigma)
self.num_channels = num_channels
self.stride = size // 2 if stride is None else int(stride)
if batch:
self.stride = [1] + [self.stride] * self.dim + [1] # No support for strides in the batch and channel dims
else:
self.stride = [self.stride] * self.dim + [1] # No support for strides in the batch and channel dims
self.convDN = getattr(tf.nn, 'conv%dd' % dim)
self.__GF = None
self.__build_gaussian_filter()
def __build_gaussian_filter(self):
range_1d = tf.range(-(self.size/2) + 1, self.size//2 + 1)
g_1d = tf.math.exp(-1.0 * tf.pow(range_1d, 2) / (2. * tf.pow(self.sigma, 2)))
g_1d_expanded = tf.expand_dims(g_1d, -1)
iterator = tf.constant(1)
self.__GF = tf.while_loop(lambda iterator, g_1d: tf.less(iterator, self.dim),
lambda iterator, g_1d: (iterator + 1, tf.expand_dims(g_1d, -1) * tf.transpose(g_1d_expanded)),
[iterator, g_1d],
[iterator.get_shape(), tf.TensorShape(None)], # Shape invariants
back_prop=False
)[-1]
self.__GF = tf.divide(self.__GF, tf.reduce_sum(self.__GF)) # Normalization
self.__GF = tf.reshape(self.__GF, (*[self.size]*self.dim, 1, 1)) # Add Ch_in and Ch_out for convolution
self.__GF = tf.tile(self.__GF, (*[1] * self.dim, self.num_channels, self.num_channels,))
def apply_filter(self, in_image):
return self.convDN(in_image, self.__GF, self.stride, 'SAME')
@property
def kernel(self):
return self.__GF