DDMR / TrainingScripts /Train_3d_weaklySupervised.py
jpdefrutos's picture
Updated call to DataGeneratorManager
49e1f69
raw
history blame
4.62 kB
import os, sys
currentdir = os.path.dirname(os.path.realpath(__file__))
parentdir = os.path.dirname(currentdir)
sys.path.append(parentdir) # PYTHON > 3.3 does not allow relative referencing
PYCHARM_EXEC = os.getenv('PYCHARM_EXEC') == 'True'
import numpy as np
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard, EarlyStopping
import voxelmorph as vxm
import neurite as ne
import h5py
from datetime import datetime
import DeepDeformationMapRegistration.utils.constants as C
from DeepDeformationMapRegistration.data_generator import DataGeneratorManager
from DeepDeformationMapRegistration.utils.misc import try_mkdir
from DeepDeformationMapRegistration.networks import WeaklySupervised
from DeepDeformationMapRegistration.losses import HausdorffDistanceErosion
from DeepDeformationMapRegistration.layers import UncertaintyWeighting
os.environ['CUDA_DEVICE_ORDER'] = C.DEV_ORDER
os.environ['CUDA_VISIBLE_DEVICES'] = '0' # Check availability before running using 'nvidia-smi'
C.TRAINING_DATASET = '/mnt/EncryptedData1/Users/javier/vessel_registration/sanity_dataset_vessels'
C.BATCH_SIZE = 2
C.LIMIT_NUM_SAMPLES = None
C.EPOCHS = 10000
# Load data
# Build data generator
data_generator = DataGeneratorManager(C.TRAINING_DATASET, C.BATCH_SIZE, True, C.LIMIT_NUM_SAMPLES,
1 - C.TRAINING_PERC,
input_labels=[C.DG_LBL_MOV_VESSELS, C.DG_LBL_FIX_VESSELS, C.DG_LBL_MOV_IMG, C.DG_LBL_ZERO_GRADS],
output_labels=[])
train_generator = data_generator.get_generator('train')
validation_generator = data_generator.get_generator('validation')
# Build model
in_shape = train_generator.get_input_shape()[1:-1]
enc_features = [16, 32, 32, 32, 32, 32]# const.ENCODER_FILTERS
dec_features = [32, 32, 32, 32, 32, 32, 32, 16, 16]# const.ENCODER_FILTERS[::-1]
nb_features = [enc_features, dec_features]
vxm_model = WeaklySupervised(inshape=in_shape, all_labels=[1], nb_unet_features=nb_features, int_steps=5)
# Losses and loss weights
grad = tf.keras.Input(shape=(*in_shape, 3), name='multiLoss_grad_input', dtype=tf.float32)
# fix_img = tf.keras.Input(shape=(*in_shape, 1), name='multiLoss_fix_img_input', dtype=tf.float32)
def dice_loss(y_true, y_pred):
# Dice().loss returns -Dice score
return 1 + vxm.losses.Dice().loss(y_true, y_pred)
multiLoss = UncertaintyWeighting(num_loss_fns=2,
num_reg_fns=1,
loss_fns=[HausdorffDistanceErosion(3, 5).loss, dice_loss],
reg_fns=[vxm.losses.Grad('l2').loss],
prior_loss_w=[1., 1.],
prior_reg_w=[0.01],
name='MultiLossLayer')
loss = multiLoss([vxm_model.inputs[1], vxm_model.inputs[1],
vxm_model.references.pred_segm, vxm_model.references.pred_segm,
grad,
vxm_model.references.pos_flow])
full_model = tf.keras.Model(inputs=vxm_model.inputs + [grad], outputs=vxm_model.outputs + [loss])
# Compile the model
full_model.compile(optimizer=tf.keras.optimizers.Adam(lr=1e-4), loss=None)
# Train
output_folder = os.path.join('TrainingScripts/TrainOutput/weaklysupervised_DCTHLN_UW_haus_dice_'+datetime.now().strftime("%H%M%S-%d%m%Y"))
try_mkdir(output_folder)
try_mkdir(os.path.join(output_folder, 'checkpoints'))
try_mkdir(os.path.join(output_folder, 'tensorboard'))
my_callbacks = [
#EarlyStopping(patience=const.EARLY_STOP_PATIENCE, monitor='dice', mode='max', verbose=1),
ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'best_model.h5'),
save_best_only=True, monitor='val_loss', verbose=0, mode='min'),
ModelCheckpoint(os.path.join(output_folder, 'checkpoints', 'weights.{epoch:05d}-{val_loss:.2f}.h5'),
save_best_only=True, save_weights_only=True, monitor='val_loss', verbose=0, mode='min'),
# CSVLogger(train_log_name, ';'),
# UpdateLossweights([haus_weight, dice_weight], [const.MODEL+'_resampler_seg', const.MODEL+'_resampler_seg'])
TensorBoard(log_dir=os.path.join(output_folder, 'tensorboard'),
batch_size=C.BATCH_SIZE, write_images=False, histogram_freq=10, update_freq='epoch',
write_grads=True),
EarlyStopping(monitor='val_loss', verbose=1, patience=50, min_delta=0.0001)
]
hist = full_model.fit(train_generator, epochs=C.EPOCHS, validation_data=validation_generator, verbose=2, callbacks=my_callbacks)